Involvement of S-Nitrosylation in Neurodegeneration

Part of the Protein Reviews book series (PRON, volume 13)


S-nitrosylation is a post-translational modification that is found to regulate increasing number of cellular and physiological functions such as neurotransmission, vesicle trafficking, gene expression and apoptosis in the biological system. This modification involves the attachment of nitric oxide (NO) covalently to the cysteine residue within the functional domains of proteins. However, imbalance of nitrosative stress through S-nitrosylation has also been linked to disorders like neurodegeneration. Although the mechanism of how S-nitrosylation can regulate normal biological functions and at the same time can contribute to neurodegeneration is not completely understood, recent studies have shown that different neuroprotective pathways can be compromised by S-nitrosylation under high level of nitrosative stress. Thus, thorough understanding of how S-nitrosylation can contribute to the pathogenesis of neurodegenerative disorders will help develop new therapeutic treatment for these diseases in the future.


Nitric Oxide Amyotrophic Lateral Sclerosis Ubiquitin Proteasomal System Nitrosative Stress Vesicle Trafficking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



KKKC is supported by grants and the Area of Excellence Scheme established under the University Grants Committee of the Hong Kong Special Administrative Region (HKUST6435/06M, HIA05/06.SC04, AoE/B-15/01)


  1. Arnelle, D.R., and Stamler, J.S. (1995). NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch. Biochem. Biophys. 318:279–285.PubMedCrossRefGoogle Scholar
  2. Azad, N., Vallyathan, V., Wang, L., et al. (2006). S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J. Biol. Chem. 281:34124–34134.PubMedCrossRefGoogle Scholar
  3. Benhar, M., Forrester, M.T., Hess, D.T., et al. (2008). Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054.PubMedCrossRefGoogle Scholar
  4. Cheah, J.H., Kim, S.F., Hester, L.D., et al. (2006). NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51:431–440.PubMedCrossRefGoogle Scholar
  5. Cho, D.H., Nakamura, T., Fang, J., et al. (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105.PubMedCrossRefGoogle Scholar
  6. Chung, K.K. (2007). Say NO to neurodegeneration: role of S-nitrosylation in neurodegenerative disorders. Neurosignals 15:307–313.CrossRefGoogle Scholar
  7. Chung, K.K., Zhang, Y., Lim, K.L., et al. (2001). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7:1144–1150.PubMedCrossRefGoogle Scholar
  8. Chung, K.K., Thomas, B., Li, X., et al. (2004). S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331.PubMedCrossRefGoogle Scholar
  9. Chung, K.K., Dawson, T.M., Dawson, V.L. (2005a). Nitric oxide, S-nitrosylation and neurodegeneration. Cell. Mol. Biol. (Noisy-le-grand) 51:247–254.Google Scholar
  10. Chung, K.K., Dawson, V.L., Dawson, T.M. (2005b). S-nitrosylation in Parkinson’s disease and related neurodegenerative disorders. Meth. Enzymol. 396:139–150.PubMedCrossRefGoogle Scholar
  11. Fang, M., Jaffrey, S.R., Sawa, A., et al. (2000). Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28:183–193.PubMedCrossRefGoogle Scholar
  12. Fang, J., Nakamura, T., Cho, D.H., et al. (2007). S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 104:18742–18747.PubMedCrossRefGoogle Scholar
  13. Feany, M.B., and Pallanck, L.J. (2003). Parkin: a multipurpose neuroprotective agent? Neuron 38:13–16.PubMedCrossRefGoogle Scholar
  14. Garban, H.J., Marquez-Garban, D.C., et al. (2005). Rapid nitric oxide-mediated S-nitrosylation of estrogen receptor: Regulation of estrogen-dependent gene transcription. Proc. Natl. Acad. Sci. U.S.A. 102:2632–2636PubMedCrossRefGoogle Scholar
  15. Gaston, B.M., Carver, J., Doctor, A. et al. (2003). S-nitrosylation signaling in cell biology. Mol. Interv. 3:253–263.PubMedCrossRefGoogle Scholar
  16. Giasson B. I., Duda J. E., Murray I. V., et al. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989.PubMedCrossRefGoogle Scholar
  17. Haendeler, J., Hoffmann, J., Tischler, V., et al. (2002). Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat. Cell Biol. 4:743–749.PubMedCrossRefGoogle Scholar
  18. Hara, M.R., Agrawal, N., Kim, S.F., et al. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7:665–674.PubMedCrossRefGoogle Scholar
  19. Hess, D.T., Matsumoto, A., Nudelman, R., et al. (2001). S-nitrosylation: spectrum and specificity. Nat. Cell Biol. 3:E46–49.PubMedCrossRefGoogle Scholar
  20. Huang, Y., Man, H.Y., Sekine-Aizawa, Y., et al. (2005). S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron 46:533–540.PubMedCrossRefGoogle Scholar
  21. Ischiropoulos, H., and Beckman, J.S. (2003). Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J. Clin. Invest. 111:163–169.PubMedGoogle Scholar
  22. Ito, G., Ariga, H., Nakagawa, Y., et al. (2006). Roles of distinct cysteine residues in S-nitrosylation and dimerization of DJ-1. Biochem. Biophys. Res. Commun. 339:667–672.PubMedCrossRefGoogle Scholar
  23. Kahle, P.J., and Haass, C. (2004). How does parkin ligate ubiquitin to Parkinson’s disease? EMBO Rep. 5:681–685.PubMedCrossRefGoogle Scholar
  24. Li, F., Sonveaux, P., Rabbani, Z.N., et al. (2007). Regulation of HIF-1alpha stability through S-nitrosylation. Mol. Cell 26:63–74.PubMedCrossRefGoogle Scholar
  25. Lim, K.H., Ancrile, B.B., Kashatus, D.F., et al. (2008). Tumour maintenance is mediated by eNOS. Nature 452:646–649.PubMedCrossRefGoogle Scholar
  26. Lipton, A.J., Johnson, M.A., Macdonald, T., et al. (2001). S-nitrosothiols signal the ventilatory response to hypoxia. Nature 413:171–174.PubMedCrossRefGoogle Scholar
  27. Liu, L., Yan, Y., Zeng, M., et al. (2004). Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116:617–628.PubMedCrossRefGoogle Scholar
  28. Lonze, B.E., and Ginty, D.D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623.PubMedCrossRefGoogle Scholar
  29. Luchsinger B.P., Rich, E.N., Gow, A.J., et al. (2003). Routes to S-nitroso-hemoglobin formation with heme redox and preferential reactivity in the beta subunits. Proc. Natl. Acad. Sci. U.S.A. 100:461–466PubMedCrossRefGoogle Scholar
  30. Mannick, J.B., Hausladen, A., Liu, L., et al. (1999). Fas-induced caspase denitrosylation. Science 284:651–654.PubMedCrossRefGoogle Scholar
  31. Mannick, J.B., Schonhoff, C., Papeta, N., et al. (2001). S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154:1111–1116.PubMedCrossRefGoogle Scholar
  32. Marshall, H.E., Hess, D.T., Stamler, J.S. (2004). S-nitrosylation: physiological regulation of NF-kappaB. Proc. Natl. Acad. Sci. U.S.A. 101:8841–8842.PubMedCrossRefGoogle Scholar
  33. Matsushita, K., Morrell, C.N., Cambien, B., et al. (2003). Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115:139–150.PubMedCrossRefGoogle Scholar
  34. McMahon, T.J., Moon, R.E., Luschinger, B.P., et al. (2002). Nitric oxide in the human respiratory cycle. Nat. Med. 8:711–717.PubMedGoogle Scholar
  35. Mitchell, D.A., and Marletta, M.A. (2005). Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat. Chem. Biol. 1:154–158.PubMedCrossRefGoogle Scholar
  36. Mitchell, D.A., Morton, S.U., Fernhoff, N.B., et al. (2007). Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc. Natl. Acad. Sci. U.S.A. 104:11609–11614PubMedCrossRefGoogle Scholar
  37. Nakamura, T., and Lipton, S.A. (2008). Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antiox. Redox Sign. 10:87–101.CrossRefGoogle Scholar
  38. Nott, A., Watson, P.M., Robinson, J.D., et al. (2008). S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455:411–415.PubMedCrossRefGoogle Scholar
  39. Pawloski, J.R., Hess, D.T., Stamler, J.S. (2001). Export by red blood cells of nitric oxide bioactivity. Nature 409:622–626.PubMedCrossRefGoogle Scholar
  40. Perez-Mato, I., Castro, C., Ruiz, F.A., et al. (1999). Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J. Biol. Chem.274:17075–17079.PubMedCrossRefGoogle Scholar
  41. Raines, K.W., Bonini, M.G., Campbell, S.L. (2007). Nitric oxide cell signaling: S-nitrosation of Ras superfamily GTPases. Cardiovasc. Res. 75:229–239.PubMedCrossRefGoogle Scholar
  42. Reynaert, N.L., Ckless, K., Korn, S.H., et al. (2004). Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc. Natl. Acad. Sci. U.S.A. 101:8945–8950PubMedCrossRefGoogle Scholar
  43. Riccio, A., Alvania, R.S., Lonze, B.E., et al. (2006). A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol. Cell 21:283–294.PubMedCrossRefGoogle Scholar
  44. Rothstein, J.D. (2009). Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann. Neurol. 65 Suppl 1:S3–9.PubMedCrossRefGoogle Scholar
  45. Savitt, J.M., Dawson, V.L., Dawson, T.M. (2006). Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest. 116:1744–1754.PubMedCrossRefGoogle Scholar
  46. Schonhoff, C.M., Matsuoka, M., Tummala, H., et al. (2006). S-nitrosothiol depletion in amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U.S.A. 103:2404–2409.PubMedCrossRefGoogle Scholar
  47. Sen, N., Hara, M.R., Kornberg, M.D., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10:866–873.PubMedCrossRefGoogle Scholar
  48. Srinivasula, S.M., and Ashwell, J.D. (2008). IAPs: what’s in a name? Mol. Cell 30:123–135.PubMedCrossRefGoogle Scholar
  49. Stamler, J.S., Toone, E.J., Lipton, S.A., et al. (1997a). (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696.PubMedCrossRefGoogle Scholar
  50. Stamler, J.S., Jia, L., Eu, J.P., et al. (1997b). Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037.PubMedCrossRefGoogle Scholar
  51. Thomas, B., and Beal, M. F. (2007). Parkinson’s disease. Hum. Mol. Genet. 16(Spec No. 2):­R183–194.PubMedCrossRefGoogle Scholar
  52. Thornberry, N.A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281:1312–1316.PubMedCrossRefGoogle Scholar
  53. Torta, F., Usuelli, V., Malgaroli, A. et al. (2008). Proteomic analysis of protein S-nitrosylation. Proteomics 8:4484–4494.PubMedCrossRefGoogle Scholar
  54. Tsang, A.H., and Chung, K.K. (2009). Oxidative and nitrosative stress in Parkinson’s disease. Biochim. Biophys. Acta 1792:643–650.PubMedCrossRefGoogle Scholar
  55. Tsang, A.H., Lee, Y.I., Ko, H.S., et al. (2009). S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 106:4900–4905PubMedCrossRefGoogle Scholar
  56. Uehara, T., Nakamura, T., Yao, D., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517.PubMedCrossRefGoogle Scholar
  57. Vaux, D.L., and Silke, J. (2005). IAPs, RINGs and ubiquitylation. Nat. Rev. Mol. Cell Biol. 6:287–297.PubMedCrossRefGoogle Scholar
  58. Wang, G., Moniri, N.H., Ozawa, K., et al. (2006). Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc. Natl. Acad. Sci. U.S.A. 103:1295–1300PubMedCrossRefGoogle Scholar
  59. Whalen, E.J., Foster, M.W., Matsumoto, A., et al. (2007). Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 129:511–522.PubMedCrossRefGoogle Scholar
  60. Yao, D., Gu, Z., Nakamura, T., et al. (2004). Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl. Acad. Sci. U.S.A. 101:10810–10814PubMedCrossRefGoogle Scholar
  61. Yee-Koh, M., Spivak-Kroizman, T.R., Powis, G. (2008). HIF-1 regulation: not so easy come, easy go. Trends Biochem. Sci. 33:526–534.PubMedCrossRefGoogle Scholar
  62. Zhai, D., Jin, C., Huang, Z., et al. (2008). Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B and Mcl-1. J. Biol. Chem. 283:9580–9586.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiochemistryHong Kong University of Science and TechnologyHong KongPeople’s Republic of China

Personalised recommendations