Advertisement

GPI-Anchored Proteins in Health and Disease

  • David R. Taylor
  • Nigel M. Hooper
Chapter
Part of the Protein Reviews book series (PRON, volume 13)

Abstract

Covalently linked to the C-terminus of many proteins, the glycosyl-phosphatidylinositol (GPI) anchor provides a means to anchor the attached protein to the cell membrane. Whilst the GPI anchor of mature proteins may be extensively modified, all GPI anchors possess a common core structure comprising of a phosphoethanolamine linker and a phosphatidylinositol lipid tail, separated by a glycan core. GPI-anchored proteins have been demonstrated to perform diverse physiological functions; however, the GPI anchor itself imparts certain properties on the protein. These include association with detergent-insoluble lipid rafts, targeting to the apical membrane of polarised cells and signal transduction. In addition to their normal functions, GPI-anchored proteins have been shown to play roles in the pathogenesis of disease. In this chapter we discuss the structure of the GPI anchor and its putative physiological functions, as well as discussing its contribution to the diseases paroxysmal nocturnal hemoglobinuria, prion disease and malaria, as well as bacterial infections.

Keywords

Lipid Raft Prion Disease Bovine Spongiform Encephalopathy Neural Cell Adhesion Molecule Paroxysmal Nocturnal Hemoglobinuria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguzzi, A. (2005). Cell biology. Prion toxicity: all sail and no anchor. Science 308:1420–1421.PubMedCrossRefGoogle Scholar
  2. Allen, J.A., Halverson-Tamboli, R.A., et al. (2007). Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8:128–140.PubMedCrossRefGoogle Scholar
  3. Anderson, R.G. (1998). The caveolae membrane system. Annu. Rev. Biochem. 67:199–225.PubMedCrossRefGoogle Scholar
  4. Anderson, S.M., Yu, G., Giattina, M., et al. (1996). Intercellular transfer of a glycosylphosphatidylinositol (GPI)-linked protein: release and uptake of CD4-GPI from recombinant adeno-associated virus-transduced HeLa cells. Proc. Natl. Acad. Sci. U.S.A. 93:5894–5898.PubMedCrossRefGoogle Scholar
  5. Baron, G.S., Wehrly, K., Dorward, D.W., et al. (2002). Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrP(Sc)) into contiguous membranes. EMBO J. 21:1031–1040.PubMedCrossRefGoogle Scholar
  6. Bastisch, I., Tiede, A., Deckert, M., et al. (2000). Glycosylphosphatidylinositol (GPI)-deficient Jurkat T cells as a model to study functions of GPI-anchored proteins. Clin. Exp. Immunol. 122:49–54.PubMedCrossRefGoogle Scholar
  7. Becker, C.F., Liu, X., Olschewski, D., et al. (2008). Semisynthesis of a glycosylphosphatidylinositol-anchored prion protein. Angew. Chem. Int. Ed. Engl. 47:8215–8219.PubMedCrossRefGoogle Scholar
  8. Benting, J.H., Rietveld, A.G., Simons, K. (1999). N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J. Cell Biol. 146:313–320.PubMedCrossRefGoogle Scholar
  9. Bessler, M., Mason, P.J., Hillmen, P., et al. (1994). Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO J. 13:110–117.PubMedGoogle Scholar
  10. Brodsky, R.A. (2006). New insights into paroxysmal nocturnal hemoglobinuria. Hematology Am. Soc. Hematol. Educ. Program 24–28:516.Google Scholar
  11. Broomfield, S.J., and Hooper, N.M. (1993). Characterization of an antibody to the cross-reacting determinant of the glycosyl-phosphatidylinositol anchor of human membrane dipeptidase. Biochim. Biophys. Acta 1145:212–218.PubMedCrossRefGoogle Scholar
  12. Brown, D.A., and Rose, J.K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544.PubMedCrossRefGoogle Scholar
  13. Campana, V., Sarnataro, D., Zurzolo, C. (2005). The highways and byways of prion protein trafficking. Trends Cell Biol. 15:102–111.PubMedCrossRefGoogle Scholar
  14. Chadda, R., Howes, M.T., Plowman, S.J., et al. (2007). Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8:702–717.PubMedCrossRefGoogle Scholar
  15. Chesebro, B., Trifilo, M., Race, R., et al. (2005). Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–1439.PubMedCrossRefGoogle Scholar
  16. Conese, M., Nykjaer, A., Petersen, C.M., et al., (1995). alpha-2 Macroglobulin receptor/Ldl receptor-related protein (Lrp)-dependent internalization of the urokinase receptor. J. Cell Biol. 131:1609–1622.PubMedCrossRefGoogle Scholar
  17. Diep, D.B., Nelson, K.L., Raja, S.M., et al. (1998). Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J. Biol. Chem. 273:2355–2360.PubMedCrossRefGoogle Scholar
  18. Eisenhaber, B., and Eisenhaber, F. (2007). Posttranslational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure? Curr. Protein Pept. Sci. 8:197–203.PubMedCrossRefGoogle Scholar
  19. Eisenhaber, B., Schneider, G., Wildpaner, M., et al. (2004). A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J. Mol. Biol. 337:243–253.PubMedCrossRefGoogle Scholar
  20. Ferguson, M.A. (1999). The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J. Cell Sci. 112:2799–2809.PubMedGoogle Scholar
  21. Ferguson, M.A., Homans, S.W., Dwek, R.A. et al. (1988). Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239:753–759.PubMedCrossRefGoogle Scholar
  22. Folsch, H. (2008). Regulation of membrane trafficking in polarized epithelial cells. Curr. Opin. Cell Biol. 20:208–213.PubMedCrossRefGoogle Scholar
  23. Fraering, P., Imhof, I., Meyer, U., et al. (2001). The GPI transamidase complex of Saccharomyces cerevisiae contains Gaa1p, Gpi8p, and Gpi16p. Mol. Biol. Cell 12:3295–3306.PubMedGoogle Scholar
  24. Fukushima, K., Ikehara, Y., Kanai, M., et al. (2003). A beta-N-acetylglucosaminyl phosphate diester residue is attached to the glycosylphosphatidylinositol anchor of human placental alkaline phosphatase: a target of the channel-forming toxin aerolysin. J. Biol. Chem. 278:36296–36303.PubMedCrossRefGoogle Scholar
  25. Glebov, O.O., Bright, N.A., Nichols, B.J. (2006). Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat. Cell Biol. 8:46–54.PubMedCrossRefGoogle Scholar
  26. Homans, S.W., Ferguson, M.A., Dwek, R.A., et al. (1988). Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature 333:269–272.PubMedCrossRefGoogle Scholar
  27. Hooper, N.M. (2001). Determination of glycosyl-phosphatidylinositol membrane protein anchorage. Proteomics 1:748–755.PubMedCrossRefGoogle Scholar
  28. Hugel, B., Martinez, M.C., Kunzelmann, C., et al. (2004). Modulation of signal transduction through the cellular prion protein is linked to its incorporation in lipid rafts. Cell. Mol. Life Sci. 61:2998–3007.PubMedCrossRefGoogle Scholar
  29. Jones, D.R., and Varela-Nieto, I. (1998). The role of glycosyl-phosphatidylinositol in signal transduction. Int. J. Biochem. Cell Biol. 30:313–326.PubMedCrossRefGoogle Scholar
  30. Kamena, F., Tamborrini, M., Liu, X., et al. (2008). Synthetic GPI array to study antitoxic malaria response. Nat. Chem. Biol. 4:238–240.PubMedCrossRefGoogle Scholar
  31. Kasahara, K., and Sanai, Y. (2000). Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj. J. 17:153–162.PubMedCrossRefGoogle Scholar
  32. Kawagoe, K., Kitamura, D., Okabe, M., et al. (1996). Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood 87:3600–3606.PubMedGoogle Scholar
  33. Kinoshita, T., and Inoue, N. (2000). Dissecting and manipulating the pathway for glycosylphosphatidylinositol-anchor biosynthesis. Curr. Opin. Chem. Biol. 4:632–638.PubMedCrossRefGoogle Scholar
  34. Kondoh, G., Tojo, H., Nakatani, Y., et al. (2005). Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat. Med. 11:160–166.PubMedCrossRefGoogle Scholar
  35. Kooyman, D.L., Byrne, G.W., McClellan, S., et al. (1995). In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 269:89–92.PubMedCrossRefGoogle Scholar
  36. Leisle, L., Parkin, E.T., Turner, A.J. et al. (2005). Angiotensin-converting enzyme as a GPIase: a critical reevaluation. Nat. Med. 11:1139–1140.PubMedCrossRefGoogle Scholar
  37. Lewis, P.A., Properzi, F., Prodromidou, K., et al. (2006). Removal of the glycosylphosphatidylinositol anchor from PrP(Sc) by cathepsin D does not reduce prion infectivity. Biochem. J. 395:443–448.PubMedCrossRefGoogle Scholar
  38. Lichtenberg, D., Goni, F.M., Heerklotz, H. (2005). Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30:430–436.PubMedCrossRefGoogle Scholar
  39. Liu, T., Li, R., Pan, T., et al. (2002). Intercellular transfer of the cellular prion protein. J. Biol. Chem. 277:47671–47678.PubMedCrossRefGoogle Scholar
  40. Low, M.G., and Huang, K.S. (1991). Factors affecting the ability of glycosylphosphatidylinositol-specific phospholipase D to degrade the membrane anchors of cell surface proteins. Biochem. J. 279:483–493.PubMedGoogle Scholar
  41. Lundmark, R., Doherty, G.J., Howes, M.T., et al. (2008). The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr. Biol. 18:1802–1808.PubMedCrossRefGoogle Scholar
  42. Maeda, Y., Tashima, Y., Houjou, T., et al. (2007). Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol. Biol. Cell 18:1497–1506.PubMedCrossRefGoogle Scholar
  43. Mann, K.J., Hepworth, M.R., Raikwar, N.S., et al. (2004). Effect of glycosylphosphatidylinositol (GPI)-phospholipase D overexpression on GPI metabolism. Biochem. J. 378:641–648.PubMedCrossRefGoogle Scholar
  44. Mayor, S., and Riezman, H. (2004). Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell. Biol. 5:110–120.PubMedCrossRefGoogle Scholar
  45. Mayor, S., Rothberg, K.G., Maxfield, F.R. (1994). Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264:1948–1951.PubMedCrossRefGoogle Scholar
  46. McConville, M.J., and Ferguson, M.A. (1993). The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 294:305–324.PubMedGoogle Scholar
  47. McConville, M.J., and Menon, A.K. (2000). Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids. Mol. Membr. Biol. 17:1–16.PubMedCrossRefGoogle Scholar
  48. Milhiet, P.E., Giocondi, M.C., Baghdadi, O., et al. (2002). Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts. EMBO Rep. 3:485–490.PubMedCrossRefGoogle Scholar
  49. Miyata, T., Yamada, N., Iida, Y., et al. (1994). Abnormalities of PIG-A transcripts in granulocytes from patients with paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 330:249–255.PubMedCrossRefGoogle Scholar
  50. Movahedi, S., and Hooper, N.M. (1997). Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C. Biochem. J. 326:531–537.PubMedGoogle Scholar
  51. Moyo, V.M., Mukhina, G.L., Garrett, E.S. et al. (2004). Natural history of paroxysmal nocturnal haemoglobinuria using modern diagnostic assays. Br. J. Haematol. 126:133–138.PubMedCrossRefGoogle Scholar
  52. Munro, S. (2003). Lipid rafts: elusive or illusive? Cell 115:377–388.PubMedCrossRefGoogle Scholar
  53. Nafa, K., Mason, P.J., Hillmen, P., et al. (1995). Mutations in the PIG-A gene causing paroxysmal nocturnal hemoglobinuria are mainly of the frameshift type. Blood 86:4650–4655.PubMedGoogle Scholar
  54. Nagarajan, S., Brodsky, R.A., Young, N.S. et al. (1995). Genetic defects underlying paroxysmal nocturnal hemoglobinuria that arises out of aplastic anemia. Blood 86:4656–4661.PubMedGoogle Scholar
  55. Nebl, T., De Veer, M.J., Schofield, L. (2005). Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology 130 Suppl:S45–62.PubMedCrossRefGoogle Scholar
  56. Nicholson, T.B., and Stanners, C.P. (2006). Specific inhibition of GPI-anchored protein function by homing and self-association of specific GPI anchors. J. Cell Biol. 175:647–659.PubMedCrossRefGoogle Scholar
  57. Nicholson, T.B., and Stanners, C.P. (2007). Identification of a novel functional specificity signal within the GPI anchor signal sequence of carcinoembryonic antigen. J. Cell Biol. 177:211–218.PubMedCrossRefGoogle Scholar
  58. Nozaki, M., Ohishi, K., Yamada, N., et al. (1999). Developmental abnormalities of glycosylphosphatidylinositol-anchor-deficient embryos revealed by Cre/loxP system. Lab. Invest. 79:293–299.PubMedGoogle Scholar
  59. Paladino, S., Sarnataro, D., Tivodar, S., et al. (2007). Oligomerization is a specific requirement for apical sorting of glycosyl-phosphatidylinositol-anchored proteins but not for non-raft-associated apical proteins. Traffic 8:251–258.PubMedCrossRefGoogle Scholar
  60. Paladino, S., Lebreton, S., Tivodar, S., et al. (2008). Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. J. Cell Sci. 121:4001–4007.PubMedCrossRefGoogle Scholar
  61. Pang, S., Urquhart, P., and Hooper, N.M. (2004). N-glycans, not the GPI anchor, mediate the apical targeting of a naturally glycosylated, GPI-anchored protein in polarised epithelial cells. J. Cell Sci. 117:5079–5086.PubMedCrossRefGoogle Scholar
  62. Parkyn, C.J., Vermeulen, E.G., Mootoosamy, R.C., et al. (2008). LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein. J. Cell Sci. 121:773–783.PubMedCrossRefGoogle Scholar
  63. Paulick, M.G., and Bertozzi, C.R. (2008). The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47:6991–7000.PubMedCrossRefGoogle Scholar
  64. Paulick, M.G., Forstner, M.B., Groves, J.T. et al. (2007). A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor. Proc. Natl. Acad. Sci. U.S.A. 104:20332–20337.PubMedCrossRefGoogle Scholar
  65. Pomorski, T., and Menon, A.K. (2006). Lipid flippases and their biological functions. Cell. Mol. Life Sci. 63:2908–2921.PubMedCrossRefGoogle Scholar
  66. Prusiner, S.B. (1998). Prions. Proc. Natl. Acad. Sci. U.S.A. 95:13363–13383.PubMedCrossRefGoogle Scholar
  67. Rajendran, L., and Simons, K. (2005). Lipid rafts and membrane dynamics. J. Cell Sci. 118:1099–1102.PubMedCrossRefGoogle Scholar
  68. Rapoport, T.A. (2007). Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669.PubMedCrossRefGoogle Scholar
  69. Ricci, V., Galmiche, A., Doye, A., et al. (2000). High cell sensitivity to Helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol. Biol. Cell 11:3897–3909.PubMedGoogle Scholar
  70. Rodriguez-Boulan, E., Kreitzer, G., Musch, A. (2005). Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell. Biol. 6:233–247.PubMedCrossRefGoogle Scholar
  71. Rother, R.P., Bell, L., Hillmen, P. et al. (2005). The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293:1653–1662.PubMedCrossRefGoogle Scholar
  72. Sabharanjak, S., Sharma, P., Parton, R.G. et al. (2002). GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2:411–423.PubMedCrossRefGoogle Scholar
  73. Sarnataro, D., Paladino, S., Campana, V., et al. (2002). PrPC is sorted to the basolateral membrane of epithelial cells independently of its association with rafts. Traffic 3:810–821.PubMedCrossRefGoogle Scholar
  74. Savage, W.J., Barber, J.P., Mukhina, G.L., et al. (2009). Glycosylphosphatidylinositol-anchored protein deficiency confers resistance to apoptosis in PNH. Exp. Hematol. 37:42–51.PubMedCrossRefGoogle Scholar
  75. Schofield, L., and Hackett, F. (1993). Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 177:145–153.PubMedCrossRefGoogle Scholar
  76. Schofield, L., Novakovic, S., Gerold, P., et al. (1996). Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J. Immunol. 156:1886–1896.PubMedGoogle Scholar
  77. Schofield, L., Hewitt, M.C., Evans, K. et al. (2002). Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418:785–789.PubMedCrossRefGoogle Scholar
  78. Schuck, S., and Simons, K. (2006). Controversy fuels trafficking of GPI-anchored proteins. J. Cell Biol. 172:963–965.PubMedCrossRefGoogle Scholar
  79. Screaton, R.A., DeMarte, L., Draber, P., et al. (2000). The specificity for the differentiation blocking activity of carcinoembryonic antigen resides in its glycophosphatidyl-inositol anchor. J. Cell Biol. 150:613–626.PubMedCrossRefGoogle Scholar
  80. Shao, N., Xue, J., Guo, Z. (2004). Chemical synthesis of a skeleton structure of sperm CD52-A GPI-anchored glycopeptide. Angew. Chem. Int. Ed. Engl. 43:1569–1573.PubMedCrossRefGoogle Scholar
  81. Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387:569–572.PubMedCrossRefGoogle Scholar
  82. Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol. 1:31–39.PubMedCrossRefGoogle Scholar
  83. Simons, K., and Vaz, W.L. (2004). Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33:269–295.PubMedCrossRefGoogle Scholar
  84. Stevenson, M.M. and Riley, E.M. (2004). Innate immunity to malaria. Nat. Rev. Immunol. 4:169–180.PubMedCrossRefGoogle Scholar
  85. Tachado, S.D., and Schofield, L. (1994). Glycosylphosphatidylinositol toxin of Trypanosoma brucei regulates IL-1 alpha and TNF-alpha expression in macrophages by protein tyrosine kinase mediated signal transduction. Biochem. Biophys. Res. Commun. 205:984–991.PubMedCrossRefGoogle Scholar
  86. Takeda, J., Miyata, T., Kawagoe, K., et al., (1993). Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73:703–711.PubMedCrossRefGoogle Scholar
  87. Taylor, D.R., and Hooper, N.M. (2006). The prion protein and lipid rafts. Mol. Membr. Biol. 23:89–99.PubMedCrossRefGoogle Scholar
  88. Taylor, D.R., and Hooper, N.M. (2007). The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein. Biochem. J. 402:17–23.PubMedCrossRefGoogle Scholar
  89. Traister, A., Shi, W. and Filmus, J. (2008). Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem. J. 410:503–511.PubMedCrossRefGoogle Scholar
  90. Udenfriend, S., and Kodukula, K. (1995). How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu. Rev. Biochem. 64:563–591.PubMedCrossRefGoogle Scholar
  91. van der Goot, F.G., Pattus, F., Parker, M., et al. (1994). The cytolytic toxin aerolysin: from the soluble form to the transmembrane channel. Toxicology 87:19–28.PubMedCrossRefGoogle Scholar
  92. Vijaykumar, M., Naik, R.S. and Gowda, D.C. (2001). Plasmodium falciparum glycosylphosphatidylinositol-induced TNF-alpha secretion by macrophages is mediated without membrane insertion or endocytosis. J. Biol. Chem . 276:6909–6912.PubMedCrossRefGoogle Scholar
  93. White, N.J., and Ho, M. (1992). The pathophysiology of malaria. Adv. Parasitol. 31:83–173.PubMedCrossRefGoogle Scholar
  94. Young, N.S. and Maciejewski, J. (1997). The pathophysiology of acquired aplastic anemia.N. Engl. J. Med. 336:1365–1372.PubMedCrossRefGoogle Scholar
  95. Zurzolo, C., Lisanti, M.P., Caras, I.W., et al. (1993). Glycosylphosphatidylinositol-anchored proteins are preferentially targeted to the basolateral surface in Fischer rat thyroid epithelial cells. J. Cell. Biol. 121:1031–1039.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Protedysis Research Group, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, and Leeds Institute of Genetics, Health and TherapeuticsUniversity of LeedsLeedsUK

Personalised recommendations