Skip to main content

Regulation of Chromatin Structure and Transcription Via Histone Modifications

  • Chapter
  • First Online:

Part of the book series: Protein Reviews ((PRON,volume 13))

Abstract

Chromatin, which was once considered merely a structural component required for DNA packaging, is now recognized as a dynamic template governed by intricate regulation. Histone post-translational modifications (PTMs) contribute to chromatin dynamics and regulate fundamental biological processes including transcription, mitotic chromatin condensation and DNA repair following damage. To date, histone methylation, acetylation, phosphorylation, ubiquitination, sumoylation and ADP-ribosylation, among others, have been described – and the list continues to grow. The last decade has witnessed an explosion in the discovery and characterization of histone PTMs, the enzymatic machinery and binding effectors responsible for their regulation, as well as unexpected mechanisms of histone regulation, such as lysine demethylation and histone tail clipping. This chapter focuses on the regulation of well-characterized histone PTMs, and their roles in the context of transcription and chromatin structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aikawa, Y., Nguyen, L.A., Isono, K., et al. (2006). Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO J. 25:3955–3965.

    Article  PubMed  CAS  Google Scholar 

  • Barlev, N.A., Emelyanov, A.V., Castagnino, P., et al. (2003). A novel human Ada2 homologue functions with Gcn5 or Brg1 to coactivate transcription. Mol. Cell. Biol. 23:6944–6957.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, E., and Hake, S.B. (2006). The nucleosome: a little variation goes a long way. Biochem. Cell Biol. 84:505–517.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, E., Muratore-Schroeder, T.L., Diaz, R.L., et al. (2008). A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc. Natl. Acad. Sci U.S.A 105:1533–1538.

    Article  PubMed  CAS  Google Scholar 

  • Bode, A.M., and Dong, Z. (2005). Inducible covalent posttranslational modification of histone H3. Sci. STKE 2005:re4.

    Article  PubMed  Google Scholar 

  • Bonner, W.M., Redon, C.E., Dickey, J.S., et al. (2008). γH2A.X and cancer. Nat. Rev. Cancer. 8:957–967.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, J.E., and Allis, C.D. (1995). An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. U.S.A. 92:6364–6368.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, J.E., Zhou, J., Ranalli, T., et al. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.

    Article  PubMed  CAS  Google Scholar 

  • Burgold, T., Spreafico, F., De Santa, F., et al. (2008). The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3:e3034.

    Article  PubMed  Google Scholar 

  • Buszczak, M., Paterno, S., Spradling, A.C. (2009). Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science 323:248–251.

    Article  PubMed  CAS  Google Scholar 

  • Cao, R., and Zhang, Y. (2004). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14:155–164.

    Article  PubMed  CAS  Google Scholar 

  • Cerutti, H., and Casas-Mollano, J.A. (2009). Histone H3 phosphorylation: universal code or lineage specific dialects? Epigenetics 4:71–75.

    Article  PubMed  CAS  Google Scholar 

  • Chen, E.S., Zhang, K., Nicolas, E., et al. (2008). Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–7.

    Article  PubMed  CAS  Google Scholar 

  • Cook, P.J., Ju, B.G., Telese, F., et al. (2009). Tyrosine dephosphorylation of H2A.X modulates apoptosis and survival decisions. Nature 458:591–596.

    Article  PubMed  CAS  Google Scholar 

  • Crosio, C., Fimia, G.M., Loury, R., et al. (2002). Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol. 22:874–885.

    Article  PubMed  CAS  Google Scholar 

  • Csordas, A., Multhaup, I., Grunicke, H. (1984). Transcription of chemically acetylated chromatin with homologous RNA polymerase B. Biosci. Rep. 4:155–163.

    Article  PubMed  CAS  Google Scholar 

  • Cunliffe, V.T. (2008). Eloquent silence: developmental functions of Class I histone deacetylases. Curr. Opin. Genet. Dev. 18:404–410.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, E.M., Muratore-Schroeder, T.L., Cook, R.G., et al. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 7:284–294.

    Article  Google Scholar 

  • Fischle, W., Tseng, B.S., Dormann, H.L., et al. (2005). Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122.

    Article  PubMed  CAS  Google Scholar 

  • Frederiks, F., Tzouros, M., Oudgenoeg, G., et al. (2008). Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nat. Struct. Mol. Biol. 15:550–557.

    Article  PubMed  CAS  Google Scholar 

  • Geng, F., and Tansey, W.P. (2008). Polyubiquitylation of histone H2B. Mol. Biol. Cell. 19:3616–3624.

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulos, T., and Thireos, G. (1992). Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152.

    PubMed  CAS  Google Scholar 

  • Guo, Y., Nady, N., Qi, C., et al. (2009). Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res. 37:2204–2210.

    Article  PubMed  CAS  Google Scholar 

  • Haberland, M., Montgomery, R.L., Olson, E.N. (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 10:32–42.

    Article  PubMed  CAS  Google Scholar 

  • Hake, S.B., Garcia, B.A., Kauer, M., et al. (2005). Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl. Acad. Sci. U.S.A. 102:6344–6349.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M. (1996). Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439.

    Article  PubMed  CAS  Google Scholar 

  • Horn, P.J., and Peterson, C.L. (2002). Chromatin higher order folding-wrapping up transcription. Science 297:1824–1827

    Article  PubMed  CAS  Google Scholar 

  • Hsu, J.Y., Sun, Z.W., Li, X., et al. (2000). Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B., Su, H., Bhat, A., et al. (2008). The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 12:1–11.

    Google Scholar 

  • Karachentsev, D., Sarma, K., Reinberg, D., et al. (2005). PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19:431–435.

    Article  PubMed  CAS  Google Scholar 

  • Klose, R.J., Kallin, E.M., Zhang, Y. (2006). JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7:715–727.

    Article  PubMed  CAS  Google Scholar 

  • Klose, R.J., and Zhang, Y. (2007). Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 8:307–318.

    Article  PubMed  CAS  Google Scholar 

  • Koh, S.S., Chen, D., Lee, Y.H., et al. (2001). Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J. Biol. Chem. 276:1089–1098.

    Article  PubMed  CAS  Google Scholar 

  • Kohlmaier, A., Savarese, F., Lachner, M., et al. (2004). A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2:E171

    Article  PubMed  Google Scholar 

  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128:693–705.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.G., Villa, R., Trojer, P., et al. (2007). Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–450.

    Article  PubMed  CAS  Google Scholar 

  • Litt, M., Qiu, Y., Huang, S. (2009). Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation. Biosci. Rep. 29:131–141.

    Article  PubMed  CAS  Google Scholar 

  • Luger, K., Mader, A. W., Richmond, R. K., et al. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 38:251–260.

    Google Scholar 

  • Luo, R.X., Postigo, A.A., Dean, D.C. (1998). Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan, L.C., Willis, A.C., Barratt, M.J. (1991). Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65:775–783.

    Article  PubMed  CAS  Google Scholar 

  • Maison, C., and Almouzni, G. (2004). HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell. Biol. 5:296–304.

    Article  PubMed  CAS  Google Scholar 

  • McManus, K.J., and Hendzel, M.J. (2003). Quantitative analysis of CBP- and P300-induced histone acetylations in vivo using native chromatin. Mol. Cell. Biol. 23:7611–7627.

    Article  PubMed  CAS  Google Scholar 

  • Motoyama, N., and Naka, K. (2004). DNA damage tumor suppressor genes and genomic instability. Curr. Opin. Genet. Dev. 14:11–6.

    Article  PubMed  CAS  Google Scholar 

  • Osley, A. (2006). Regulation of histone H2A and H2B ubiquitylation, Brief. Funct. Genomic Proteomic 5:179–189.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.J., and Luger, K. (2008). Histone chaperones in nucleosome eviction and histone exchange. Curr. Opin. Struct. Biol. 18:282–289.

    Article  PubMed  Google Scholar 

  • Rea, S., Eisenhaber, F., O’Carroll, D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599.

    Article  PubMed  CAS  Google Scholar 

  • Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 24:425–432.

    Article  Google Scholar 

  • Rice, J.C., Briggs, S.D., Ueberheide, B., et al. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12:1591–1598.

    Article  PubMed  CAS  Google Scholar 

  • Ringrose, L., and Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38:413–443.

    Article  PubMed  CAS  Google Scholar 

  • Rogakou, E.P., Pilch, D.R., Orr, A.H., et al. (1998). DNA double-stranded breaks induce histone H2A.X phosphorylation on serine 139. J. Biol. Chem. 273:5858–5868.

    Article  PubMed  CAS  Google Scholar 

  • Roth, S.Y., Denu, J.M., Allis, C.D. (2001). Histone acetyltransferases. Annu. Rev. Biochem. 70:81–120.

    Article  PubMed  CAS  Google Scholar 

  • Ruthenburg, A.J., Allis, C.D., Wysocka, J. (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell. 12:15–30.

    Article  Google Scholar 

  • Schotta, G., Lachner, M., Sarma, K., et al. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18:1251–1262.

    Article  PubMed  CAS  Google Scholar 

  • Secombe, J., and Eisenman, R.N. (2007). The function and regulation of the JARID1 family of histone H3 lysine 4 demethylases: the Myc connection. Cell Cycle 6:1324–1328.

    Article  PubMed  CAS  Google Scholar 

  • Shahbazian, M.D., and Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem.76:75–100.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., and Whetstine, J.R. (2007). Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell. 12:1–14.

    Article  Google Scholar 

  • Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75:243–269.

    Article  PubMed  CAS  Google Scholar 

  • Sridhar, V.V., Kapoor, A., Zhang, K., et al. (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447:735–738.

    Article  PubMed  CAS  Google Scholar 

  • Sterner, D.E., and Berger, S.L. (2000). Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64:435–459.

    Article  PubMed  CAS  Google Scholar 

  • Strahl, B. D., and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Stucki, M., Clapperton, J.A., Mohammad, R., et al. (2005). MDC1 directly binds phosphorylated histone H2A.X to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226.

    Article  PubMed  CAS  Google Scholar 

  • Sun, B., Hong, J., Zhang, P., et al. (2008). Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J. Biol. Chem. 283:36504–36512.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana, M., Ueda, J., Fukuda, M., et al. (2005). Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19:815–826.

    Article  PubMed  CAS  Google Scholar 

  • Taverna, S.D., Li, H., Ruthenburg, A.J., et al. (2007). How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14:1025–1040.

    Article  PubMed  CAS  Google Scholar 

  • Tschiersch, B., Hofmann, A., Krauss, V., et al. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13:3822–3831.

    PubMed  CAS  Google Scholar 

  • Turner, B. M. (1993). Decoding the nucleosome. Cell 75:5–8.

    PubMed  CAS  Google Scholar 

  • Turner, B.M. (2000). Histone acetylation and an epigenetic code. Bioessays 22:836–845.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B.M. (2005). Reading signals on the nucleosome with a new nomenclature for modified histones. Nat. Struct. Mol. Biol. 12:110–112.

    Article  PubMed  CAS  Google Scholar 

  • Vader, G., Kauw, J.J., Medema, R.H., et al. (2006). Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep. 7:85–92.

    Article  PubMed  CAS  Google Scholar 

  • van Holde, K. E. (1988). Chromatin. Springer, New York.

    Google Scholar 

  • Wang, H., Wang, L., Erdjument-Bromage, H., et al. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 14:873–878.

    Article  Google Scholar 

  • Wang, L., Tang, Y., Cole, P.A., et al. (2008). Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr. Opin. Struct. Biol. 18:741–747.

    Article  PubMed  CAS  Google Scholar 

  • Weake, V.M., and Workman, J.L. (2008). Histone ubiquitination: triggering gene activity. Mol. Cell 29:653–663.

    Article  PubMed  CAS  Google Scholar 

  • Whitcomb, S.J., Basu, A., Allis, C.D., et al. (2007). Polycomb Group proteins: an evolutionary perspective. Trends Genet. 23:494–502.

    Article  PubMed  CAS  Google Scholar 

  • Winter, S., Simboeck, E., Fischle, W., et al. (2008). 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J. 27:88–99.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.I., Lessard, J., Crabtree, G.R. (2009). Understanding the words of chromatin regulation. Cell 136:200–206.

    Article  PubMed  CAS  Google Scholar 

  • Wysocka, J., Allis, C.D., Coonrod, S. (2006). Histone arginine methylation and its dynamic regulation. Front. Biosci. 11:344–355.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, A., Li, H., Shechter, D., et al. (2009). WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457:57–62.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W., Cho, H., Evans, R.M. (2003). Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol. 364:205–323.

    PubMed  CAS  Google Scholar 

  • Yang, X.J., Ogryzko, V.V., Nishikawa, J., et al. (1996). A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.H., Vickers, E., Brehm, A., et al. (2001). Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol. Cell. Biol. 21:2802–2814.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H., and Mizzen, C.A. (2009). The multiple facets of histone H4-lysine 20 methylation. Biochem. Cell Biol. 87:151–161.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Q., Rank, G., Tan, Y.T., et al. (2009). PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16:304–311.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, P., Zhou, W., Wang, J., et al. (2007). A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation, Mol. Cell 27:609–621.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Matthew Goldberg, Luis Duarte, Andrew Xiao and Sandra Hake for discussions and critical reading of this chapter. We apologize to those whose work could not be cited due to space limitations. This work was supported by The Ellison Medical Foundation and the American Skin Association to E.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ratnakumar, K., Kapoor, A., Bernstein, E. (2011). Regulation of Chromatin Structure and Transcription Via Histone Modifications. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_15

Download citation

Publish with us

Policies and ethics