Skip to main content

Methodological Considerations for Using Bold fMRI in the Clinical Neurosciences

  • Chapter
  • First Online:
Brain Imaging in Behavioral Medicine and Clinical Neuroscience
  • 1984 Accesses

Abstract

The advancement of MRI methods has provided researchers with unique opportunities to examine human brain function in vivo. Since the introduction of functional magnetic resonance imaging (fMRI) in the early 1990s, the number of published studies using this method to examine cognitive, motor, and sensory functioning has increased each year. In the year 2000, roughly 1,000 articles were published using fMRI, and this number topped 2,500 in the year 2006 with no clear sign of asymptote (Bandettini, Int J Psychophysiol 63:138–145, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandettini P. Functional MRI today. Int J Psychophysiol. 2007;63:138–145.

    Article  PubMed  Google Scholar 

  2. Birn RM, Bandettini PA, Cox RW, Shaker R. Event-related fMRI of tasks involving brief motion. Hum Brain Mapp. 1999;7:106–114.

    Article  PubMed  Google Scholar 

  3. Biswal BB, Hyde JS. Contour-based registration technique to differentiate between task activated and head motion induced signal variations in fMRI. Magn Reson Med. 1997;38(3):470–476.

    Article  PubMed  Google Scholar 

  4. Bookheimer SY. Methodological issues in pediatric neuroimaging. Ment Retard Dev Disabil Res Rev. 2000;6:161–165.

    Article  PubMed  Google Scholar 

  5. Bosnell R, Wegner C, Kincses ZT, et al. Reproducibility of fMRI in the clinical setting: implications for trial designs. Neuroimage. 2008;42:603–610.

    Article  PubMed  Google Scholar 

  6. Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991;75(5):685–693.

    Article  PubMed  Google Scholar 

  7. Brennan SC, Redd WH, Schorr PB, et al. Anxiety and panic during magnetic resonance scans. Lancet. 1988;2(8609):512.

    Article  PubMed  Google Scholar 

  8. Brett M, Leff AP, Rorden C, Ashburner J. Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage. 2001;14:486–500.

    Article  PubMed  Google Scholar 

  9. Buckner RL, Koutstaal W, Schacter DL, Dale AM, Rotte MR, Rosen BR. Functional-anatomic study of episodic retrieval: II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. Neuroimage. 1998;7:163–175.

    Article  PubMed  Google Scholar 

  10. Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci. 2000;12(suppl 2):24–34.

    Article  PubMed  Google Scholar 

  11. Casey BJ, Cohen JD, O’Craven K, et al. Reproducibility of fMRI results across four institutions using a spatial working memory task. Neuroimage. 1998;8:249–261.

    Article  PubMed  Google Scholar 

  12. Cohen MS. Parametric analysis of fMRI data using linear systems methods. Neuroimage. 1997;6:93–103.

    Article  PubMed  Google Scholar 

  13. Cohen MS, DuBois RM. Stability, repeatibility, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Reson Imaging. 1999;10:33–40.

    Article  PubMed  Google Scholar 

  14. Crinion J, Ashburner J, Leff A, Brett M, Price C, Friston K. Spatial normalization of lesioned brains: performance evaluation and impact on fMRI analyses. Neuroimage. 2007;37:866–875.

    Article  PubMed  Google Scholar 

  15. D’Esposito M, Zarahn E, Aguirre GK, Rypma B. The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage. 1999;10:6–14.

    Article  PubMed  Google Scholar 

  16. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213:93–118.

    Article  PubMed  Google Scholar 

  17. Duckrow RB. Decreased cerebral blood flow during acute hyperglycemia. Brain Res. 1995;703:145–150.

    Article  PubMed  Google Scholar 

  18. Dunn JF, Wadghiri YZ, Meyerand ME. Regional heterogeneity in the brain’s response to hypoxia measured using BOLD MR imaging. Magn Reson Med. 1999;41:850–854.

    Article  PubMed  Google Scholar 

  19. Eaton KP, Szaflarski JP, Altaye M, et al. Reliability of fMRI for studies of language in post-stroke aphasia subjects. Neuroimage. 2008;41:311–322.

    Article  PubMed  Google Scholar 

  20. Epstein JN, Casey BJ, Tonev ST, et al. Assessment and prevention of head motion during imaging of patients with attention deficit hyperactivity disorder. Psychiatry Res. 2007;155(1):75–82.

    Article  PubMed  Google Scholar 

  21. Erberich SG, Friedlich P, Seri I, Nelson MD Jr, Blüml S. Functional MRI in neonates using neonatal head coil and MR compatible incubator. Neuroimage. 2003;20:683–692.

    Article  PubMed  Google Scholar 

  22. Forbes ML, Hendrich KS, Kochanek PM, et al. Assessment of cerebral blood flow and CO2 reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin labeling in rats. J Cereb Blood Flow Metab. 1997;17(8):865–874.

    Article  PubMed  Google Scholar 

  23. Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. Movement related effects in fMRI time series. Magn Reson Med. 1996;35:346–355.

    PubMed  Google Scholar 

  24. Friston KJ, Worsley KJ, Frackowiak RSJ, et al. Assessing the significance of local activation using their spatial extent. Hum Brain Mapp. 1994;1:214–220.

    Article  Google Scholar 

  25. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med. 2000;44(1):162–167.

    Article  PubMed  Google Scholar 

  26. Golding EM. Sequelae following traumatic brain injury, The cerebrovascular perspective. Brain Res Rev. 2002;38(3):377–388.

    Article  PubMed  Google Scholar 

  27. Havel T, Braun B, Rau A, et al. Reproducibility of activation in four motor paradigms: an fMRI study. J Neurol. 2006;253:471–476.

    Article  PubMed  Google Scholar 

  28. Hattori N, Huang SC, Wu HM, et al. PET investigation of post-traumatic cerebral blood volume and blood flow. Acta Neurochir Suppl. 2003;86:49–52.

    PubMed  Google Scholar 

  29. Hattori N, Huang SC, Wu HM, et al. Acute changes in regional cerebral (18)f-FDG kinetics in patients with traumatic brain injury. J Nucl Med. 2004;45(5):775–783.

    PubMed  Google Scholar 

  30. Henson R. What can functional neuroimaging tell the experimental psychologist? Q J Exp Psychol. 2005;58A(2):193–233.

    Google Scholar 

  31. Hillary FG, Genova HM, Chiaravalloti ND, Rypma B, DeLuca J. Prefrontal modulation of working memory performance in brain injury and disease. Hum Brain Mapp. 2006;27(11):837–847.

    Article  PubMed  Google Scholar 

  32. Hillary FG, Biswal B. The influence of neuropathology on the fMRI signal: a measurement of brain or vein? Clin Neuropsychol. 2007;21:58–72.

    Article  PubMed  Google Scholar 

  33. Hillary FG. Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypothesis. J Int Neuropsychol Soc. 2008;14(4):526–534.

    Article  PubMed  Google Scholar 

  34. Holodny AI, Schulder M, Liu W, Wolko J, Maldjian JA, Kalnin AJ. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. Am J Neuroradiol. 2000;21:1415–1422.

    PubMed  Google Scholar 

  35. Huettel SA, Singerman JD, McCarthy G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage. 2001;13:161–175.

    Article  PubMed  Google Scholar 

  36. Jones TB, Bandettini PA, Birn RM. Integration of motion correction and physiological noise regression in fMRI. Neuroimage. 2008;42:582–590.

    Article  PubMed  Google Scholar 

  37. Kamper AM, Spilt A, de Craen AJM, van Buchem MA, Westendorp RGJ, Blauw GJ. Basal cerebral blood flow is dependent on the nitric oxide pathway in elderly but not in young healthy men. Exp Gerontol. 2004;39:1245–1248.

    Article  PubMed  Google Scholar 

  38. Kannurpatti SS, Biswal BB. Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations. Neuroimage.2008;40(4):1567–1574.

    Article  PubMed  Google Scholar 

  39. Katstrup A, Dichgans J, Niemeier M, Schabet M. Changes of cerebrovascular CO2 reactivity during normal aging. Stroke. 1998;29:1311–1314.

    Google Scholar 

  40. Kochanek PM, Hendrich KS, Dixon CE, Schiding JK, Williams DS, Ho C. Cerebral blood flow at one year after controlled cortical impact in rats; assessment by magnetic resonance imaging. J Neurotrauma. 2002;19(9):1029–1037.

    Article  PubMed  Google Scholar 

  41. Kotsoni E, Byrd D, Casey BJ. Special considerations for functional magnetic resonance imaging of pediatric populations. J Magn Reson Imaging. 2006;23:877–886.

    Article  PubMed  Google Scholar 

  42. Kosslyn SM. If neuroimaging is the answer, what is the question? Phil Trans R Soc Lond B. 1999;354:1283–1294.

    Article  Google Scholar 

  43. Kimberley TJ, Khandekar G, Borich M. fMRI reliability in subjects with stroke. Exp Brain Res. 2008;186:183–190.

    Article  PubMed  Google Scholar 

  44. Krings T, Reinges MHT, Willmes K, et al. Factors related to the magnitude of T2* MR signal changes during functional imaging. Neuroradiology. 2002;44:459–466.

    Article  PubMed  Google Scholar 

  45. Kurland J, Naeser MA, Baker EH, et al. Test-retest reliability of fMRI during nonverbal semantic decisions in moderate-severe nonfluent aphasia patients. Behav Neurol. 2004;15(3–4):87–97.

    PubMed  Google Scholar 

  46. Laurienti PJ, Field AS, Burdette JH, et al. Dietary caffeine consumption modulates fMRI measures. Neuroimage. 2002;17:751–757.

    Article  PubMed  Google Scholar 

  47. Law M, Saindane AM, Ge Y, et al. Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology. 2004;231(3):645–652.

    Article  PubMed  Google Scholar 

  48. Liao R, McKeown MJ, Krolik JL. Isolation and minimalization of head motion- induced signal variation in fMRI data using independent component analysis. Magn Reson Med. 2006;55:1396–1413.

    Article  PubMed  Google Scholar 

  49. Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Phil Trans R Soc Lond B. 2002;357:1003–1037.

    Article  Google Scholar 

  50. Maini CL, Pigorini F, Pau FM, et al. Cortical cerebral blood flow in HIV-1-related dementia complex. Nucl Med Commun. 1990;11(9):639–648.

    Article  PubMed  Google Scholar 

  51. Manoach DS, Halpern EF, Kramer TS, et al. Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatry. 2001;158:955–958.

    PubMed  Google Scholar 

  52. Martin NA, Patwardhan RV, Alexander M, et al. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997;87(1):9–19.

    Article  PubMed  Google Scholar 

  53. McAllister TW, Saykin AJ, Flashman LA, et al. Brain activation during working memory 1 month after mild traumatic brain injury. Neurology. 1999;53(6):1300–13008.

    PubMed  Google Scholar 

  54. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage. 2001;14:1004–1012.

    Article  PubMed  Google Scholar 

  55. McIsaac HK, Thordarson DS, Shafran R, Rachman S, Poole G. Claustrophobia and the magnetic imaging procedure. J Behav Med. 1998;21(3):255–268.

    Article  PubMed  Google Scholar 

  56. Mendes J, Kholmovski E, Parker DL. Rigid-body motion correction with self-navigation MRI. Magn Reson Med. 2009;61(3):739–747.

    Article  PubMed  Google Scholar 

  57. Menon V, Lim KO. Design and efficacy of a head-coil bite bar for reducing movement-related artifacts during functional MRI scanning. Behav Res Methods Instrum Comput. 1997;29(4):589–594.

    Google Scholar 

  58. Mulderink TA, Gitelman DR, Mesulam M, Parrish TB. On the use of caffeine as a contrast booster for BOLD fMRI studies. Neuroimage. 2002;15:37–44.

    Article  PubMed  Google Scholar 

  59. Pariente J, Loubinoux I, Carel C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol. 2001;50:718–729.

    Article  PubMed  Google Scholar 

  60. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke. 2002;33:103–109.

    Article  PubMed  Google Scholar 

  61. Poldrack RA. Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci. 2006;10(2):59–63.

    Article  PubMed  Google Scholar 

  62. Poldrack RA. Tools of the trade: region of interest analysis for fMRI. SCAN. 2007;2:67–70.

    PubMed  Google Scholar 

  63. Posse S, Olthoff U, Weckesser M, Jäncke L, Müller-Gäartner H, Dager SR. Regional dynamic signal changes during controlled hyperventilation assessed with blood oxygen level-dependent functional MR imaging. AJNR Am J Neuroradiol. 1997;18:1763–1770.

    PubMed  Google Scholar 

  64. Price CJ, Friston KJ. Scanning patients with tasks they can perform. Hum Brain Mapp. 1999;8:102–108.

    Article  PubMed  Google Scholar 

  65. Price CJ, Friston KJ. Functional imaging studies of neuropsychological patients: applications and limitations. Neurocase. 2002;8:345–354.

    Article  PubMed  Google Scholar 

  66. Price CJ, Friston KJ. Functional imaging in cognitive neuroscience II: imaging patients. In: Farah MJ, Feinberg TE, eds. Patient-Based Approaches to Cognitive Neuroscience. 2nd ed. Cambridge, MA: MIT Press; 2006:47–54.

    Google Scholar 

  67. Raz A, Lieber B, Soliman F, et al. Ecological nuances in functional magnetic resonance imaging (fMRI): psychological stressors, posture, and hydrostatics. Neuroimage. 2005;25:1–7.

    Article  PubMed  Google Scholar 

  68. Rombouts SARB, Barkhof F, van Meel CS, Scheltens P. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;73:665–671.

    Article  PubMed  Google Scholar 

  69. Schacter DL, Buckner RL, Koutstaal W, Dale AM, Rosen BR. Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study. Neuroimage. 1997;6:259–269.

    Article  PubMed  Google Scholar 

  70. Schroder ML, Muizelaar JP, Kuta AJ, Choi SC. Thresholds for cerebral ischemia after severe head injury: relationship with late CT findings and outcome. J Neurotrauma. 1996;13(1):17–23.

    Article  PubMed  Google Scholar 

  71. Seto E, Sela G, McIlroy WE, et al. Quantifying head motion associated with motor tasks used in fMRI. Neuroimage. 2001;14:284–297.

    Article  PubMed  Google Scholar 

  72. Sierra C, de la Sierra A, Chamorro A, Larrousse M, Domenech M, Coca A. Cerebral hemodynamics and silent cerebral white matter lesions in middle-aged essential hypertensive patients. Blood Press. 2004;13(5):304–309.

    Article  PubMed  Google Scholar 

  73. Siegmund DO, Worsley KJ. Testing for a signal with unknown location and scale in a stationary Gaussian random field. Ann Stat. 1994;23:608–639.

    Article  Google Scholar 

  74. Siejö BK. Brain Energy Metabolism. New York: Wiley; 1978.

    Google Scholar 

  75. Sperling R, Greve D, Dale A, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci USA. 2002;99(1):455–460.

    Article  PubMed  Google Scholar 

  76. Swank RL, Roth JG, Woody DC Jr. Cerebral blood flow and red cell delivery in normal subjects and in multiple sclerosis. Neurol Res. 1983;5(1):37–59.

    PubMed  Google Scholar 

  77. Sweet LH, Rao SM, Primeau M, Mayer AR, Cohen RA. Functional magnetic resonance imaging of working memory among multiple sclerosis. J Neuroimaging. 2004;14(2):150–157.

    PubMed  Google Scholar 

  78. Thacker NA, Burton E, Lacey AJ, Jackson A. The effects of motion on parametric fMRI analysis techniques. Physiol Meas. 1999;20:251–263.

    Article  PubMed  Google Scholar 

  79. Tran Dinh YR, Mamo H, Cervoni J, Caulin C, Saimot AC. Disturbances in the cerebral perfusion of human immune deficiency virus-1 seropositive asymptomatic subjects: a quantitative tomography study of 18 cases. J Nucl Med. 1990;31(10):1601–1607.

    PubMed  Google Scholar 

  80. Wu DH, Guo Y, Lu CC, Suri J. Improvement to functional magnetic resonance imaging (fMRI) methods using non-rigid body image registration methods for correction in the presence of susceptibility artifact effects. In: Proceedings of the 28th IEEE EMBS Annual International Conference. New York, 2006:1018–1020.

    Google Scholar 

  81. Yeo DT, Fessler JA, Kim B. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging. Magn Reson Imaging. 2008;26(5):703–714.

    Article  PubMed  Google Scholar 

  82. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15(4):870–878.

    Article  PubMed  Google Scholar 

  83. Pendse G, Borsook D, Becerra L. Enhanced false discovery rate using Gaussian mixture models for thresholding fMRI statistical maps. Neuroimage. 2009;47(1):231–261.

    Article  PubMed  Google Scholar 

  84. Rypma B, D’Esposito M. The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc Natl Acad Sci. 1999;96(11):6558–6563.

    Article  PubMed  Google Scholar 

  85. Friston KJ, Price CJ, Fletcher P, Moore C, Frackowiak RSJ, Dolan RJ. The Trouble with Cognitive Subtraction. Neuroimage. 1996;4(2):97–104.

    Article  PubMed  Google Scholar 

  86. Chang L, Speck O, Miller EN, Braun J, Jovicich J, Koch C, Itti L, Ernst T. Neural correlates of attention and working memory deficits in HIV patients. Neurology. 2001;57(6):1001–1007.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank G. Hillary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chiou, K.S., Hillary, F.G. (2011). Methodological Considerations for Using Bold fMRI in the Clinical Neurosciences. In: Cohen, R., Sweet, L. (eds) Brain Imaging in Behavioral Medicine and Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6373-4_8

Download citation

Publish with us

Policies and ethics