Advertisement

Diffusion-Tensor Imaging and Behavioral Medicine

  • Stephen Correia
  • Assawin Gongvatana
Chapter

Abstract

Historically, the role of white matter in human cognition and behavior has received less attention than that of gray matter (Filley, The Behavioral Neurology of White Matter, 2001). It was not until the 1960s that Geschwind (1926–1984) firmly established the importance of white matter in supporting normal mental activity in his classic work on disconnection syndromes (Geschwind, Brain 88:237–294, 585–644, 1965; Geschwind and Kaplan, Neurology 12:675–685, 1962). Since then, interest in the role of white matter in cognition, emotion, and behavior has grown. By the late 1980s, magnetic resonance imaging (MRI) was widely adopted for detecting brain disorders. The introduction of diffusion-tensor imaging (DTI) in the mid-1990s (Basser, NMR Biomed 8:333–344, 1995; Basser et al., J Magn Reson B 103:247–254, 1994; Basser et al., Biophys J 66:259–267, 1994) provided a new in vivo MRI tool for gaining unprecedented insight into the structure of white matter and its functional correlates. DTI provides information about the structural coherence and topography of biological tissue based on the measurement of rate and direction of water diffusion. DTI is particularly useful in fibrous tissue such as cerebral white matter or muscle where the linear arrangement of cell structures constrains water to diffuse faster along the fibers than in other directions.

Keywords

White Matter Fractional Anisotropy Corpus Callosum Mean Diffusivity Radial Diffusivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors would like to thank Kathryn Devlin for her help in preparing the manuscript. The views expressed in this chapter are not those of the Department of Veterans Affairs.

References

  1. 1.
    Filley CM. The neurologic background. In The Behavioral Neurology of White Matter. New York: Oxford University Press; 2001:3-18.Google Scholar
  2. 2.
    Geschwind N. Disconnexion syndromes in animals and man. II. Brain. 1965;88:585-644.PubMedCrossRefGoogle Scholar
  3. 3.
    Geschwind N. Disconnexion syndromes in animals and man. I. Brain. 1965;88:237-294.PubMedCrossRefGoogle Scholar
  4. 4.
    Geschwind N, Kaplan E. A human cerebral deconnection syndrome. A preliminary report. Neurology. 1962;12:675-685.PubMedGoogle Scholar
  5. 5.
    Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8:333-344.PubMedCrossRefGoogle Scholar
  6. 6.
    Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103:247-254.PubMedCrossRefGoogle Scholar
  7. 7.
    Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259-267.PubMedCrossRefGoogle Scholar
  8. 8.
    Basser PJ, Ozarslan E. Introduction to diffusion MR. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:3-10.Google Scholar
  9. 9.
    Brown R. A brief account of microscoplal observations made in the months of June, July, and August, 1827, on the particles contained in pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Edinb New Philos J. 1828;4:161-173.Google Scholar
  10. 10.
    Einstein A. Uber die von der molekularkinetischen Theorie der warme gefordete Bewegung von in rubenden Flussigkeiten suspendierten Teilchen. Annalen der Physik. 1905;4:549-560.CrossRefGoogle Scholar
  11. 11.
    Alexander AL, Lee JE, Lazar M, Field AS. Diffusion ­tensor imaging of the brain. Neurotherapeutics. 2007;4:316-329.PubMedCrossRefGoogle Scholar
  12. 12.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15:435-455.PubMedCrossRefGoogle Scholar
  13. 13.
    Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:534-546.PubMedCrossRefGoogle Scholar
  14. 14.
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209-219.PubMedCrossRefGoogle Scholar
  15. 15.
    Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in teh presence of a time-dependent field gradient. J Chem Phys. 1965;42:288-292.CrossRefGoogle Scholar
  16. 16.
    Jones DK. Gaussian modeling of the diffusion signal. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:37-54.CrossRefGoogle Scholar
  17. 17.
    Dardzinski BJ, Sotak CH, Fisher M, Hasegawa Y, Li L, Minematsu K. Apparent diffusion coefficient ­mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med. 1993; 30:318-325.PubMedCrossRefGoogle Scholar
  18. 18.
    Li TQ, Chen ZG, Hindmarsh T. Diffusion-weighted MR imaging of acute cerebral ischemia. Acta Radiol. 1998;39:460-473.PubMedGoogle Scholar
  19. 19.
    Pierpaoli C, Righini A, Linfante I, Tao-Cheng JH, Alger JR, Di Chiro G. Histopathologic correlates of abnormal water diffusion in cerebral ischemia: diffusion-weighted MR imaging and light and electron microscopic study. Radiology. 1993;189:439-448.PubMedGoogle Scholar
  20. 20.
    Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol. 1995;37:231-241.PubMedCrossRefGoogle Scholar
  21. 21.
    Park HJ. Quantification of white matter using diffusion-tensor imaging. Int Rev Neurobiol. 2005;66:167-212.PubMedCrossRefGoogle Scholar
  22. 22.
    Strandberg, J. Introduction to tensors. <http://medlem.spray.se/gogelo/tensors.pdf/>; 2005.
  23. 23.
    Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25:356-369.PubMedGoogle Scholar
  24. 24.
    Malloy P, Correia S, Stebbins G, Laidlaw DH. Neuroimaging of white matter in aging and dementia. Clin Neuropsychol. 2007;21:73-109.PubMedCrossRefGoogle Scholar
  25. 25.
    Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2002;47:1083-1099.PubMedCrossRefGoogle Scholar
  26. 26.
    Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51:807-815.PubMedCrossRefGoogle Scholar
  27. 27.
    Brihuega-Moreno O, Heese FP, Hall LD. Optimization of diffusion measurements using Cramer-Rao lower bound theory and its application to articular cartilage. Magn Reson Med. 2003;50:1069-1076.PubMedCrossRefGoogle Scholar
  28. 28.
    Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol. 2008;29:843-852.PubMedCrossRefGoogle Scholar
  29. 29.
    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol. 2008;29:632-641.PubMedCrossRefGoogle Scholar
  30. 30.
    Pipe J. Pulse sequences for diffusion-weighted MRI. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:11-35.CrossRefGoogle Scholar
  31. 31.
    Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross A. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17:1429-1436.PubMedCrossRefGoogle Scholar
  32. 32.
    Beaulieu C. The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:105-126.CrossRefGoogle Scholar
  33. 33.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637-648.PubMedGoogle Scholar
  34. 34.
    Assaf Y, Pasternak O. Diffusion tensor imaging ­(DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34:51-61.PubMedCrossRefGoogle Scholar
  35. 35.
    Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42:526-540.PubMedCrossRefGoogle Scholar
  36. 36.
    Hubbard PL, Parker GJM. Validation of tractography. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:353-375.CrossRefGoogle Scholar
  37. 37.
    Lawes IN, Barrick TR, Murugam V, et al. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage. 2008;39:62-79.PubMedCrossRefGoogle Scholar
  38. 38.
    Dyrby TB, Sogaard LV, Parker GJ, et al. Validation of in vitro probabilistic tractography. Neuroimage. 2007;37:1267-1277.PubMedCrossRefGoogle Scholar
  39. 39.
    Parker GJ, Wheeler-Kingshott CA, Barker GJ. Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans Med Imaging. 2002;21:505-512.PubMedCrossRefGoogle Scholar
  40. 40.
    Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265-269.PubMedCrossRefGoogle Scholar
  41. 41.
    Lazar M, Weinstein DM, Tsuruda JS, et al. White matter tractography using diffusion tensor deflection. Hum Brain Mapp. 2003;18:306-321.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang S, Demiralp C, Laidlaw D. Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Trans Vis Comput Graph. 2003;9:454-462.CrossRefGoogle Scholar
  43. 43.
    Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44:625-632.PubMedCrossRefGoogle Scholar
  44. 44.
    Behrens TE, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50:1077-1088.PubMedCrossRefGoogle Scholar
  45. 45.
    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage. 2007;34:144-155.PubMedCrossRefGoogle Scholar
  46. 46.
    Moseley M. Diffusion tensor imaging and aging – a review. NMR Biomed. 2002;15:553-560.PubMedCrossRefGoogle Scholar
  47. 47.
    Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage. 2000;11:805-821.PubMedCrossRefGoogle Scholar
  48. 48.
    Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487-1505.PubMedCrossRefGoogle Scholar
  49. 49.
    Correia S, Lee SY, Voorn T, et al. Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. Neuroimage. 2008;42:568-581.PubMedCrossRefGoogle Scholar
  50. 50.
    Gongvatana A, Schweinsburg BC, Taylor MJ, et al. White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals. J Neurovirol. 2009;15:187-195.PubMedCrossRefGoogle Scholar
  51. 51.
    Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed. 2002;15:456-467.PubMedCrossRefGoogle Scholar
  52. 52.
    Patton JA. MR imaging instrumentation and image artifacts. Radiographics. 1994;14:1083-1096. quiz 1097-1088.PubMedGoogle Scholar
  53. 53.
    Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med. 1997;38:1016-1021.PubMedCrossRefGoogle Scholar
  54. 54.
    Bastin ME. Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative cross-correlation. Magn Reson Imaging. 1999;17:1011-1024.PubMedCrossRefGoogle Scholar
  55. 55.
    Techavipoo U, Lackey J, Shi J, Guan X, Lai S. Estimation of mutual information objective function based on Fourier shift theorem: an application to eddy current distortion correction in diffusion tensor imaging. Magn Reson Imaging. 2009;27:1281-1292.PubMedCrossRefGoogle Scholar
  56. 56.
    Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med. 2003;49:177-182.PubMedCrossRefGoogle Scholar
  57. 57.
    Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med. 1998;39:801-812.PubMedCrossRefGoogle Scholar
  58. 58.
    Ardekani S, Sinha U. Geometric distortion correction of high-resolution 3 T diffusion tensor brain images. Magn Reson Med. 2005;54:1163-1171.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhuang J, Hrabe J, Kangarlu A, et al. Correction of eddy-current distortions in diffusion tensor images using the known directions and strengths of diffu-sion gradients. J Magn Reson Imaging. 2006;24:1188-1193.PubMedCrossRefGoogle Scholar
  60. 60.
    Andersson JL, Skare S. A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage. 2002;16:177-199.PubMedCrossRefGoogle Scholar
  61. 61.
    Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med. 2004;51:103-114.PubMedCrossRefGoogle Scholar
  62. 62.
    Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med. 2002;48:128-136.PubMedCrossRefGoogle Scholar
  63. 63.
    Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20:870-888.PubMedCrossRefGoogle Scholar
  64. 64.
    Morgan PS, Bowtell RW, McIntyre DJ, Worthington BS. Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method. J Magn Reson Imaging. 2004;19:499-507.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang FN, Huang TY, Lin FH, et al. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med. 2005;54:1232-1240.PubMedCrossRefGoogle Scholar
  66. 66.
    Merhof D, Soza G, Stadlbauer A, Greiner G, Nimsky C. Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Image Anal. 2007;11:588-603.PubMedCrossRefGoogle Scholar
  67. 67.
    Chavez S, Storey P, Graham SJ. Robust correction of spike noise: application to diffusion tensor imaging. Magn Reson Med. 2009;62:510-519.PubMedCrossRefGoogle Scholar
  68. 68.
    Ding Z, Gore JC, Anderson AW. Reduction of noise in diffusion tensor images using anisotropic smoothing. Magn Reson Med. 2005;53:485-490.PubMedCrossRefGoogle Scholar
  69. 69.
    McGraw T, Vemuri BC, Chen Y, Rao M, Mareci T. DT-MRI denoising and neuronal fiber tracking. Med Image Anal. 2004;8:95-111.PubMedCrossRefGoogle Scholar
  70. 70.
    Parker GJ, Schnabel JA, Symms MR, Werring DJ, Barker GJ. Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging. J Magn Reson Imaging. 2000;11:702-710.PubMedCrossRefGoogle Scholar
  71. 71.
    Tabelow K, Polzehl J, Spokoiny V, Voss HU. Diffusion tensor imaging: structural adaptive smoothing. Neuroimage. 2008;39:1763-1773.PubMedCrossRefGoogle Scholar
  72. 72.
    Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension. 2004;44:398-404.PubMedCrossRefGoogle Scholar
  73. 73.
    de Leeuw FE, de Groot JC, Breteler MMB. White matter changes: frequency and risk factors. In: Pantoni L, Intzitari D, Wallin A, eds. The Matter of White Matter: Clinical and Pathophysiological Aspects of White Matter Disease Related to Cognitive Decline and Vascular Dementia, vol. 10. Utrecht, the Netherlands: Academic Pharmaceutical Productions; 2000:19-33.Google Scholar
  74. 74.
    Englund E. Neuropathology of white matter disease: parenchymal changes. In: Pantoni L, Inzitari D, Wallin A, eds. The Matter of White Matter: Clinical and Pathophysiological Aspects of White Matter Disease Related to Cognitive Decline and Vascular Dementia, vol. 10. Utrecht, the Netherlands: Academic Pharmaceutical Productions; 2000:223-246.Google Scholar
  75. 75.
    Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000;14:224-232.PubMedCrossRefGoogle Scholar
  76. 76.
    Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology. 2001;56:304-311.PubMedGoogle Scholar
  77. 77.
    O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry. 2004;75:441-447.PubMedCrossRefGoogle Scholar
  78. 78.
    Maclullich AM, Ferguson KJ, Reid LM, et al. Higher systolic blood pressure is associated with increased water diffusivity in normal-appearing white matter. Stroke. 2009;40(12):3869-3871.PubMedCrossRefGoogle Scholar
  79. 79.
    Hannesdottir K, Nitkunan A, Charlton RA, Barrick TR, MacGregor GA, Markus HS. Cognitive impairment and white matter damage in hypertension: a pilot study. Acta Neurol Scand. 2009;119:261-268.PubMedCrossRefGoogle Scholar
  80. 80.
    Nitkunan A, Charlton RA, McIntyre DJ, Barrick TR, Howe FA, Markus HS. Diffusion tensor imaging and MR spectroscopy in hypertension and presumed cerebral small vessel disease. Magn Reson Med. 2008;59:528-534.PubMedCrossRefGoogle Scholar
  81. 81.
    National Diabetes Information Clearinghouse, N.D.I. National Diabetes Statistics. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2007.Google Scholar
  82. 82.
    Diseases and Conditions Index, D.A.C. Metabolic Syndrome. Bethesda, MD: National Heart Lung and Blood Institute; 2007.Google Scholar
  83. 83.
    Biessels GJ, Koffeman A, Scheltens P. Diabetes and cognitive impairment. Clinical diagnosis and brain imaging in patients attending a memory clinic. J Neurol. 2006;253:477-482.PubMedCrossRefGoogle Scholar
  84. 84.
    Hassan A, Hunt BJ, O’Sullivan M. et al. Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain. 2003;126:424-432.PubMedCrossRefGoogle Scholar
  85. 85.
    Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ. Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology. 2005;237:251-257.PubMedCrossRefGoogle Scholar
  86. 86.
    Schmidt R, Launer LJ, Nilsson LG, et al. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes. 2004;53:687-692.PubMedCrossRefGoogle Scholar
  87. 87.
    Kodl CT, Franc DT, Rao JP, et al.Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes. 2008;57:3083-3089.PubMedCrossRefGoogle Scholar
  88. 88.
    Yau PL, Javier D, Tsui W, et al. Emotional and neutral declarative memory impairments and associated white matter microstructural abnormalities in adults with type 2 diabetes. Psychiatry Res. 2009;174(3):223-230.PubMedCrossRefGoogle Scholar
  89. 89.
    Segura B, Jurado MA, Freixenet N, Falcon C, Junque C, Arboix A. Microstructural white matter changes in metabolic syndrome: a diffusion tensor imaging study. Neurology. 2009;73:438-444.PubMedCrossRefGoogle Scholar
  90. 90.
    Yeh PH, Simpson K, Durazzo TC, Gazdzinski S, Meyerhoff DJ. Tract-Based Spatial Statistics (TBSS) of diffusion ­tensor imaging data in alcohol dependence: abnormalities of the motivational neurocircuitry. Psychiatry Res. 2009;173:22-30.PubMedCrossRefGoogle Scholar
  91. 91.
    Pfefferbaum A, Adalsteinsson E, Sullivan EV. Supratentorial profile of white matter microstructural integrity in recovering alcoholic men and women. Biol Psychiatry. 2006;59:364-372.PubMedCrossRefGoogle Scholar
  92. 92.
    Pfefferbaum A, Sullivan EV, Hedehus M, Adalsteinsson E, Lim KO, Moseley M. In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcohol Clin Exp Res. 2000;24:1214-1221.PubMedCrossRefGoogle Scholar
  93. 93.
    Sullivan EV, Pfefferbaum A. Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology. 2005;180:583-594.PubMedCrossRefGoogle Scholar
  94. 94.
    Pfefferbaum A, Sullivan EV. Microstructural but not macrostructural disruption of white matter in women with chronic alcoholism. Neuroimage. 2002;15:708-718.PubMedCrossRefGoogle Scholar
  95. 95.
    Pfefferbaum A, Rosenbloom M, Rohlfing T, Sullivan EV. Degradation of association and projection white matter systems in alcoholism detected with quantitative fiber tracking. Biol Psychiatry. 2009;65:680-690.PubMedCrossRefGoogle Scholar
  96. 96.
    Paul RH, Grieve SM, Niaura R, et al. Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults: a diffusion tensor imaging study. Nicotine Tob Res. 2008;10:137-147.PubMedCrossRefGoogle Scholar
  97. 97.
    Bae SC, Lyoo IK, Sung YH, et al. Increased white matter hyperintensities in male methamphetamine abusers. Drug Alcohol Depend. 2006;81:83-88.PubMedCrossRefGoogle Scholar
  98. 98.
    Ernst T, Chang L, Leonido-Yee M, Speck O. Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study. Neurology. 2000;54:1344-1349.PubMedGoogle Scholar
  99. 99.
    Thompson PM, Hayashi KM, Simon SL, et al. Structural abnormalities in the brains of human sub­jects who use methamphetamine. J Neurosci. 2004;24:6028-6036.PubMedCrossRefGoogle Scholar
  100. 100.
    Alicata D, Chang L, Cloak C, Abe K, Ernst T. Higher diffusion in striatum and lower fractional anisotropy in white matter of methamphetamine users. Psychiatry Res. 2009;174:1-8.PubMedCrossRefGoogle Scholar
  101. 101.
    Salo R, Nordahl TE, Buonocore MH, et al. Cognitive control and white matter callosal microstructure in methamphetamine-dependent subjects: a diffusion tensor imaging study. Biol Psychiatry. 2009;65:122-128.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim IS, Kim YT, Song HJ, et al. Reduced corpus callosum white matter microstructural integrity revealed by diffusion tensor eigenvalues in abstinent methamphetamine addicts. Neurotoxicology. 2009;30:209-213.PubMedCrossRefGoogle Scholar
  103. 103.
    Lyoo IK, Streeter CC, Ahn KH, et al. White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects. Psychiatry Res. 2004;131:135-145.PubMedCrossRefGoogle Scholar
  104. 104.
    Lim KO, Wozniak JR, Mueller BA, et al. Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug Alcohol Depend. 2008;92:164-172.PubMedCrossRefGoogle Scholar
  105. 105.
    Lim KO, Choi SJ, Pomara N, Wolkin A, Rotrosen JP. Reduced frontal white matter integrity in cocaine dependence: a controlled diffusion tensor imaging study. Biol Psychiatry. 2002;51:890-895.PubMedCrossRefGoogle Scholar
  106. 106.
    Ma L, Hasan KM, Steinberg JL, et al. Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend. 2009;104:262-267.PubMedCrossRefGoogle Scholar
  107. 107.
    Moeller FG, Hasan KM, Steinberg JL, et al. Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging. Neuropsychopharmacology. 2005;30:610-617.PubMedCrossRefGoogle Scholar
  108. 108.
    Romero MJ, Asensio S, Palau C, Sanchez A, Romero FJ. Cocaine addiction: diffusion tensor imaging study of the inferior frontal and anterior cingulate white matter. Psychiatry Res. 2010;181(1):57-63.PubMedCrossRefGoogle Scholar
  109. 109.
    Bega DS, McDaniel LM, Jhaveri MD, Lee VH. Diffusion weighted imaging in heroin-associated spongiform leukoencephalopathy. Neurocrit Care. 2009;10:352-354.PubMedCrossRefGoogle Scholar
  110. 110.
    Liu H, Li L, Hao Y, et al. Disrupted white matter integrity in heroin dependence: a controlled study utilizing diffusion tensor imaging. Am J Drug Alcohol Abuse. 2008;34:562-575.PubMedCrossRefGoogle Scholar
  111. 111.
    McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. Lancet Neurol. 2005;4:543-555.PubMedCrossRefGoogle Scholar
  112. 112.
    Woods SP, Carey CL, Iudicello JE, Letendre SL, Fennema-Notestine C, Grant I. Neuropsychological aspects of HIV infection. In: Grant I, Adams KM, eds. Neuropsychological Assessment of Neuropsychiatric and Neuromedical Disorders. 3rd ed. New York, NY: Oxford University Press; 2009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Psychiatry and Human BehaviorBrown UniversityProvidenceUSA

Personalised recommendations