Advertisement

Functional Magnetic Resonance Imaging

  • Lawrence H. Sweet
Chapter

Abstract

Functional magnetic resonance imaging (FMRI) is a noninvasive neuroimaging technique that enables quantification of brain function over time with an unprecedented balance of temporal and spatial resolution. FMRI has shown great utility in cognitive neuroscience and clinical research. Targets of FMRI investigations usually involve the neural networks associated with discrete cognitive challenges (broadly defined to include all brain processes, such as emotional, motivational, sensory, and motor challenges).

Keywords

Single Photon Emission Compute Tomography Functional Magnetic Resonance Imaging Blood Oxygen Level Dependent Arterial Spin Label Blood Oxygen Level Dependent Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adleman NE, Menon V, Blasey CM, et al. A developmental fMRI study of the Stroop color-word task. Neuroimage. 2002;16(1):61–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Adler CM, McDonough-Ryan P, Sax KW, Holland SK, Arndt S, Strakowski SM. fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J Psychiatr Res. 2000;34(4–5): 317–324.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson CM, Polcari A, Lowen SB, Renshaw PF, Teicher MH. Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiatry. 2002;159(8):1322–1328.CrossRefPubMedGoogle Scholar
  4. 4.
    Ahmad Z, Balsamo LM, Sachs BC, Xu B, Gaillard WD. Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology. 2003; 60(10):1598–1605.PubMedGoogle Scholar
  5. 5.
    Aylward EH, Richards TL, Berninger VW, et al. Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology. 2003;61(2):212–219.PubMedGoogle Scholar
  6. 6.
    Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med. 1993;30(2):161–173.CrossRefPubMedGoogle Scholar
  7. 7.
    Binder JR, Rao SM, Hammeke TA, et al. Functional magnetic resonance imaging of human auditory cortex. Ann Neurol. 1994;35(6):662–672.CrossRefPubMedGoogle Scholar
  8. 8.
    Birbaumer N, Grodd W, Diedrich O, et al. fMRI reveals amygdala activation to human faces in social phobics. Neuroreport. 1998;9(6):1223–1226.CrossRefPubMedGoogle Scholar
  9. 9.
    Bloom AS, Hoffmann RG, Fuller SA, Pankiewicz J, Harsch HH, Stein EA. Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model. Hum Brain Mapp. 1999;8(4):235–244.CrossRefPubMedGoogle Scholar
  10. 10.
    Boor S, Vucurevic G, Pfleiderer C, Stoeter P, Kutschke G, Boor R. EEG-related functional MRI in benign childhood epilepsy with centrotemporal spikes. Epilepsia. 2003;44(5): 688–692.CrossRefPubMedGoogle Scholar
  11. 11.
    Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci. 1996;16(13):4207–4221.PubMedGoogle Scholar
  12. 12.
    Breiter HC, Gollub RL, Weisskoff RM, et al. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19(3):591–611.CrossRefPubMedGoogle Scholar
  13. 13.
    Buckner RL, Bandettini PA, O’Craven KM, et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci U S A. 1996;93(25):14878–14883.CrossRefPubMedGoogle Scholar
  14. 14.
    Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.CrossRefPubMedGoogle Scholar
  15. 15.
    Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JD. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 2002;33(2):301–311.CrossRefPubMedGoogle Scholar
  16. 16.
    Bush G, Frazier JA, Rauch SL, et al. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting Stroop. Biol Psychiatry. 1999;45(12):1542–1552.CrossRefPubMedGoogle Scholar
  17. 17.
    Callicott JH, Ramsey NF, Tallent K, et al. Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology. 1998;18(3): 186–196.CrossRefPubMedGoogle Scholar
  18. 18.
    Chakraborty A, McEvoy AW. Presurgical functional mapping with functional MRI. Curr Opin Neurol. 2008;21(4): 446–451.CrossRefPubMedGoogle Scholar
  19. 19.
    Cohen JD, Perlstein WM, Braver TS, et al. Temporal dynamics of brain activation during a working memory task. Nature. 1997;386:604–607.CrossRefPubMedGoogle Scholar
  20. 20.
    Corina DP, Richards TL, Serafini S, et al. fMRI auditory language differences between dyslexic and able reading children. Neuroreport. 2001;12(6):1195–1201.CrossRefPubMedGoogle Scholar
  21. 21.
    D’Esposito M, Detre JA, Alsop DC, et al. The neural basis of the central executive system of working memory. Nature. 1995;378:279–281.CrossRefPubMedGoogle Scholar
  22. 22.
    Dale AM, Buckner RL. Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp. 1997; 5(5):329–340.CrossRefPubMedGoogle Scholar
  23. 23.
    Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002;118(2):115–128.CrossRefPubMedGoogle Scholar
  24. 24.
    Due DL, Huettel SA, Hall WG, Rubin DC. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry. 2002;159(6):954–960.CrossRefPubMedGoogle Scholar
  25. 25.
    Durston S, Tottenham NT, Thomas KM, et al. Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry. 2003;53(10):871–878.CrossRefPubMedGoogle Scholar
  26. 26.
    Gaillard WD, Balsamo LM, Ibrahim Z, Sachs BC, Xu B. fMRI identifies regional specialization of neural networks for reading in young children. Neurology. 2003;60(1):94–100.PubMedGoogle Scholar
  27. 27.
    Gaillard WD, Pugliese M, Grandin CB, et al. Cortical localization of reading in normal children: an fMRI language study. Neurology. 2001;57(1):47–54.PubMedGoogle Scholar
  28. 28.
    George MS, Anton RF, Bloomer C, et al. Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues. Arch Gen Psychiatry. 2001;58(4):345–352.CrossRefPubMedGoogle Scholar
  29. 29.
    Georgiewa P, Rzanny R, Hopf JM, et al. fMRI during word processing in dyslexic and normal reading children. Neuroreport. 1999;10(16):3459–3465.CrossRefPubMedGoogle Scholar
  30. 30.
    Graveline CJ, Mikulis DJ, Crawley AP, Hwang PA. Regionalized sensorimotor plasticity after hemispherectomy fMRI evaluation. Pediatr Neurol. 1998;19(5):337–342.CrossRefPubMedGoogle Scholar
  31. 31.
    Grossman M, Cooke A, DeVita C, et al. Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology. 2003;60(5):775–781.CrossRefPubMedGoogle Scholar
  32. 32.
    Haslinger B, Erhard P, Kampfe N, et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain. 2001;124(Pt 3):558–570.CrossRefPubMedGoogle Scholar
  33. 33.
    Hofer A, Weiss EM, Golaszewski SM, et al. An FMRI study of episodic encoding and recognition of words in patients with schizophrenia in remission. Am J Psychiatry. 2003;160(5):911–918.CrossRefPubMedGoogle Scholar
  34. 34.
    Holland SK, Plante E, Weber Byars A, Strawsburg RH, Schmithorst VJ, Ball WS Jr. Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage. 2001;14(4):837–843.CrossRefPubMedGoogle Scholar
  35. 35.
    Holloway V, Gadian DG, Vargha-Khadem F, Porter DA, Boyd SG, Connelly A. The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study. Brain. 2000;123(Pt 12):2432–2444.CrossRefPubMedGoogle Scholar
  36. 36.
    Jacobsen LK, Gore JC, Skudlarski P, Lacadie CM, Jatlow P, Krystal JH. Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn Reson Imaging. 2002;20(2):141–145.CrossRefPubMedGoogle Scholar
  37. 37.
    Jessen F, Scheef L, Germeshausen L, et al. Reduced hippocampal activation during encoding and recognition of words in schizophrenia patients. Am J Psychiatry. 2003; 160(7):1305–1312.CrossRefPubMedGoogle Scholar
  38. 38.
    Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage. 2000; 11(3):179–187.CrossRefPubMedGoogle Scholar
  39. 39.
    Josephs O, Turner R, Friston K. Event-related fMRI. Hum Brain Mapp. 1997;5:243–248.CrossRefPubMedGoogle Scholar
  40. 40.
    Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology. 2001;57(5):812–816.PubMedGoogle Scholar
  41. 41.
    Kumari V, Gray JA, Ffytche DH, et al. Cognitive effects of nicotine in humans: an fMRI study. Neuroimage. 2003;19(3): 1002–1013.CrossRefPubMedGoogle Scholar
  42. 42.
    Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992; 89:5675–5679.CrossRefPubMedGoogle Scholar
  43. 43.
    Lawrie SM, Whalley HC, Job DE, Johnstone EC. Structural and functional abnormalities of the amygdala in schizophrenia. Ann N Y Acad Sci. 2003;985:445–460.CrossRefPubMedGoogle Scholar
  44. 44.
    Lee JH, Telang FW, Springer CS Jr, Volkow ND. Abnormal brain activation to visual stimulation in cocaine abusers. Life Sci. 2003;73(15):1953–1961.CrossRefPubMedGoogle Scholar
  45. 45.
    Levin JM, Ross MH, Mendelson JH, et al. Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Res. 1998;82(3):135–146.CrossRefPubMedGoogle Scholar
  46. 46.
    Levine JB, Gruber SA, Baird AA, Yurgelun-Todd D. Obsessive–compulsive disorder among schizophrenic patients: an exploratory study using functional magnetic resonance imaging data. Compr Psychiatry. 1998;39(5):308–311.CrossRefPubMedGoogle Scholar
  47. 47.
    Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. 2003;23(15):6351–6356.PubMedGoogle Scholar
  48. 48.
    Li SJ, Biswal B, Li Z, et al. Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med. 2000;43(1):45–51.CrossRefPubMedGoogle Scholar
  49. 49.
    Liegeois F, Connelly A, Salmond CH, Gadian DG, Vargha-Khadem F, Baldeweg T. A direct test for lateralization of language activation using fMRI: comparison with invasive assessments in children with epilepsy. Neuroimage. 2002; 17(4):1861–1867.CrossRefPubMedGoogle Scholar
  50. 50.
    McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci. 2003;15(3):394–408.CrossRefPubMedGoogle Scholar
  51. 51.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–9872.CrossRefPubMedGoogle Scholar
  52. 52.
    Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992;89:5951–5955.CrossRefPubMedGoogle Scholar
  53. 53.
    Paquette V, Levesque J, Mensour B, et al. “Change the mind and you change the brain”: effects of cognitive–behavioral therapy on the neural correlates of spider phobia. Neuroimage. 2003;18(2):401–409.CrossRefPubMedGoogle Scholar
  54. 54.
    Paskavitz J, Sweet LH, Wellen J, Cohen R. Recruitment and stabilization of brain activation within a working memory task; an FMRI study. Brain Imaging Behav. 2010;4(1):5–21.CrossRefPubMedGoogle Scholar
  55. 55.
    Paskavitz J, Sweet LH, Samuel J. Deactivations during working memory distinguishes multiple sclerosis patients from controls. Presented at the 14th annual meeting of the Organization for Human Brain Mapping, Melbourne, Australia, June, 2008. Neuroimage. 2008;41(S1):S5 [abstract].Google Scholar
  56. 56.
    Penner IK, Rausch M, Kappos L, Opwis K, Radu EW. Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. J Neurol. 2003;250(4):461–472.CrossRefPubMedGoogle Scholar
  57. 57.
    Peters S, Suchan B, Rusin J, et al. Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients. Neuroreport. 2003;14(6):809–812.CrossRefPubMedGoogle Scholar
  58. 58.
    Prvulovic D, Hubl D, Sack AT, et al. Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage. 2002;17(3):1403–1414.CrossRefPubMedGoogle Scholar
  59. 59.
    Rao SM, Bobholz JA, Hammeke TA, et al. Functional evidence for subcortical participation in conceptual reasoning skills. Neuroreport. 1997;8:1987–1993.CrossRefPubMedGoogle Scholar
  60. 60.
    Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain. 2002;125(Pt 2):276–289.CrossRefPubMedGoogle Scholar
  61. 61.
    Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain. 2000;123(Pt 2):394–403.CrossRefPubMedGoogle Scholar
  62. 62.
    Schneider F, Weiss U, Kessler C, et al. Subcortical correlates of differential classical conditioning of aversive emotional reactions in social phobia. Biol Psychiatry. 1999;45(7): 863–871.CrossRefPubMedGoogle Scholar
  63. 63.
    Schneider F, Habel U, Kessler C, Posse S, Grodd W, Muller-Gartner HW. Functional imaging of conditioned aversive emotional responses in antisocial personality disorder. Neuropsychobiology. 2000;42(4):192–201.CrossRefPubMedGoogle Scholar
  64. 64.
    Schneider F, Habel U, Wagner M, et al. Subcortical correlates of craving in recently abstinent alcoholic patients. Am J Psychiatry. 2001;158(7):1075–1083.CrossRefPubMedGoogle Scholar
  65. 65.
    Schlosser R, Gesierich T, Kaufmann B, et al. Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage. 2003;19(3):751–763.CrossRefPubMedGoogle Scholar
  66. 66.
    Shaywitz BA, Shaywitz SE, Pugh KR, et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry. 2002;52(2):101–110.CrossRefPubMedGoogle Scholar
  67. 67.
    Small SA, Nava AS, Perera GM, Delapaz R, Stern Y. Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer’s disease and aging. Microsc Res Tech. 2000;51(1):101–108.CrossRefPubMedGoogle Scholar
  68. 68.
    Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74(1):44–50.CrossRefPubMedGoogle Scholar
  69. 69.
    Staffen W, Mair A, Zauner H, et al. Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain. 2002;125(Pt 6):1275–1282.CrossRefPubMedGoogle Scholar
  70. 70.
    Stapleton SR, Kiriakopoulos E, Mikulis D, et al. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26(2):68–82.CrossRefPubMedGoogle Scholar
  71. 71.
    Sweet L, Rao S, Primeau P, Mayer A, Cohen R. Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging. 2004;14(2): 150–157.PubMedGoogle Scholar
  72. 72.
    Sweet L, Rao S, Primeau P, Durgerian S, Cohen R. FMRI response to increased verbal working memory demands among patients with multiple sclerosis. Hum Brain Mapp. 2006;27(1):28–36.CrossRefPubMedGoogle Scholar
  73. 73.
    Sweet LH, Paskavitz JF, Haley AP, Gunstad JJ, Nyalakanti PK, Cohen RA. Imaging phonological similarity effects in verbal working memory. Neuropsychologia. 2008;46(4):1114–1123.CrossRefPubMedGoogle Scholar
  74. 74.
    Sweet LH, Mulligan RC, Finnerty CE, Jerskey BA, David SP, Cohen RA, Niaura RS. Effects of nicotine withdrawal on verbal working memory and associated brain response. Psychiatry Res. 2010 Jul 30;183(1):69–74.Google Scholar
  75. 75.
    Sweet LH, Jerskey BA, Aloia MS. Default network response to a working memory challenge after withdrawal of continuous positive airway pressure treatment for obstructive sleep apnea. Brain Imaging Behav. 2010;4(2):155–163.CrossRefPubMedGoogle Scholar
  76. 76.
    Tapert SF, Brown GG, Kindermann SS, Cheung EH, Frank LR, Brown SA. fMRI measurement of brain dysfunction in alcohol-dependent young women. Alcohol Clin Exp Res. 2001;25(2):236–245.CrossRefPubMedGoogle Scholar
  77. 77.
    Temple E, Poldrack RA, Salidis J, et al. Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport. 2001;12(2): 299–307.CrossRefPubMedGoogle Scholar
  78. 78.
    Volz HP, Gaser C, Hager F, et al. Brain activation during cognitive stimulation with the Wisconsin card sorting test – a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res. 1997;75(3):145–157.CrossRefPubMedGoogle Scholar
  79. 79.
    Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science. 1998;281(5380):1188–1191.CrossRefPubMedGoogle Scholar
  80. 80.
    Wexler BE, Gottschalk CH, Fulbright RK, et al. Functional magnetic resonance imaging of cocaine craving. Am J Psychiatry. 2001;158(1):86–95.CrossRefPubMedGoogle Scholar
  81. 81.
    Zahran E, Aguire G, D’Esposito M. A trial-based experimental design for fMRI. Neuroimage. 1997;6:122–138.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Psychiatry and Human BehaviorWarren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations