Neuroimaging of Fatigue



Fatigue is a common and debilitating symptom experienced in both clinical and healthy populations. In particular, individuals with Multiple Sclerosis (MS) and Chronic Fatigue Syndrome (CFS) frequently report high levels of fatigue which negatively affects their quality of life, including their ability to maintain a career. Even though fatigue is rated the most debilitating symptom of multiple clinical disorders and has therefore been the subject of scientific inquiry, scientists have been unsuccessful at finding an objective measure of fatigue using behavioral measures, and have had to rely on “self-reported fatigue.” This chapter focuses on the utilization of neuroimaging techniques to investigate fatigue in clinical samples (including CFS, MS, Traumatic Brain Injury, and Parkinson’s Disease) and how these techniques could potentially be used to uncover a more objective measure of fatigue.


Multiple Sclerosis Diffusion Tensor Imaging Chronic Fatigue Syndrome Functional Imaging Study Multiple Sclerosis Group 


  1. 1.
    Lewis G, Wessely S. The epidemiology of fatigue: more questions than answers. J Epidemiol Commun Health. 1992;46:92–97.CrossRefGoogle Scholar
  2. 2.
    Manu P, Lane T, Matthews D. Chronic fatigue syndromes in clinical practice. Psychother Psychosom. 1992;58(2):60–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Nelson E, Kirk J, McHugo G, et al. Chief complaint fatigue: a longitudinal study from the patient’s perspective. Fam Pract Res J. 1987;6(4):175–188.PubMedGoogle Scholar
  4. 4.
    Paralyzed Veterans of America. Fatigue and Multiple Sclerosis: Evidenced-Based Management Strategies for Fatigue in Multiple Sclerosis. Washington, DC: Multiple Sclerosis Council for Clinical Practice Guidelines; 1998.Google Scholar
  5. 5.
    DeLuca J. Fatigue: its definition, its study and its future. In: DeLuca J, ed. Fatigue as a Window to the Brain. Cambridge, MA: MIT; 2005:319–325.Google Scholar
  6. 6.
    Krupp L, Christodoulou C, Schombert H. Multiple sclerosis and fatigue. In: DeLuca J, ed. Fatigue as a Window to the Brain. Cambridge, MA: MIT; 2005:61–71.Google Scholar
  7. 7.
    Barak Y, Achiron A. Cognitive fatigue in multiple sclerosis: findings from a two-wave screening project. J Neurol Sci. 2006;245(1–2):73–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Ritvo PG, Fisk JD, Archibald CJ, Murray TJ, Field C. Psychosocial and neurological predictors of mental health in multiple sclerosis. J Clin Epidemiol. 1996;49:467–472.CrossRefPubMedGoogle Scholar
  9. 9.
    Ng AV, Kent-Baun JA. Quantitation of lower physical activity in persons with multiple sclerosis. Med Sci Sprots Exerc. 1997;29:517–523.Google Scholar
  10. 10.
    Schwartz CE, Coulthard-Morris L, Zeng Q. Psychosocial correlates of fatigue in multiple sclerosis. Arch Phys Med Rehabil. 1996;7:165–170.CrossRefGoogle Scholar
  11. 11.
    Skerrett T, Moss-Morris R. Fatigue and social impairment in multiple sclerosis: the role of patients’ cognitive and behavioral responses to their symptoms. J Psychosom Res. 2006;61(5):587–593.CrossRefPubMedGoogle Scholar
  12. 12.
    Wessely S, Hotopf M, Sharpe D. Chronic Fatigue and Its Syndromes. New York: Oxford University Press; 1998.Google Scholar
  13. 13.
    Iriarte J, Subira ML, Castro P. Modalities of fatigue in multiple sclerosis: correlation with clinical and biological factors. Mult Scler. 2000;6:124–130.CrossRefPubMedGoogle Scholar
  14. 14.
    van der Werf S, Jongen P, Lycklama à Nijeholt G, Barkhof F, Hommes O, Bleijenberg G. Fatigue in multiple sclerosis: interrelations between fatigue complaints, cerebral MRI abnormalities and neurological disability. J Neurol Sci. 1998;160(2):164–170.CrossRefPubMedGoogle Scholar
  15. 15.
    Bakshi R, Miletich R, Henschel K, et al. Fatigue in multiple sclerosis: cross-sectional correlation with brain MRI findings in 71 patients. Neurology. 1999;53(5):1151–1153.PubMedGoogle Scholar
  16. 16.
    Mainero C, Faroni J, Gasperini C, et al. Fatigue and magnetic resonance imaging activity in multiple sclerosis. J Neurol. 1999;246(6):454–458.CrossRefPubMedGoogle Scholar
  17. 17.
    Tartaglia M, Narayanan S, Francis S, et al. The relationship between diffuse axonal damage and fatigue in multiple sclerosis. Arch Neurol. 2004;61(2):201–207.CrossRefPubMedGoogle Scholar
  18. 18.
    Téllez N, Alonso J, Río J, et al. The basal ganglia: a substrate for fatigue in multiple sclerosis. Neuroradiology. 2008;50(1):17–23.CrossRefPubMedGoogle Scholar
  19. 19.
    Filippi M, Rocca M, Colombo B, et al. Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage. 2002;15(3):559–567.CrossRefPubMedGoogle Scholar
  20. 20.
    Colombo B, Boneschi F, Rossi P, et al. MRI and motor evoked potential findings in nondisabled multiple sclerosis patients with and without symptoms of fatigue. J Neurol. 2000;247(7):506–509.CrossRefPubMedGoogle Scholar
  21. 21.
    Marrie R, Fisher E, Miller D, Lee J, Rudick R. Association of fatigue and brain atrophy in multiple sclerosis. J Neurol Sci. 2005;228(2):161–166.CrossRefPubMedGoogle Scholar
  22. 22.
    Tedeschi G, Dinacci D, Lavorgna L, et al. Correlation between fatigue and brain atrophy and lesion load in multiple sclerosis patients independent of disability. J Neurol Sci. 2007;263(1–2):15–19.CrossRefPubMedGoogle Scholar
  23. 23.
    Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience. 1991;45(1):37–45.CrossRefPubMedGoogle Scholar
  24. 24.
    Miller DH, Thompson AJ, Filippi M. Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol. 2003;250(12):1407–1419.CrossRefPubMedGoogle Scholar
  25. 25.
    Li BS, Wang H, Gonen O. Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn Reson Imaging. 2003;21(8): 923–928.CrossRefPubMedGoogle Scholar
  26. 26.
    Tartaglia MC, Narayanan S, De Stefano N, et al. Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol. 2002;249(10):1382–1390.CrossRefPubMedGoogle Scholar
  27. 27.
    De Stefano N, Narayanan S, Francis SJ, et al. Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. Arch Neurol. 2002;59(10):1565–1571.CrossRefPubMedGoogle Scholar
  28. 28.
    Hoptman MJ, Volavka J, Johnson G, Weiss E, Bilder RM, Lim KO. Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. Biol Psychiatry. 2002;52(1):9–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Lim KO, Hedehus M, Moseley M, de Crespigny A, Sullivan EV, Pfefferbaum A. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry. 1999;56(4):367–374.CrossRefPubMedGoogle Scholar
  30. 30.
    Codella M, Rocca M, Colombo B, Martinelli-Boneschi F, Comi G, Filippi M. Cerebral grey matter pathology and fatigue in patients with multiple sclerosis: a preliminary study. J Neurol Sci. 2002;194(1):71–74.CrossRefPubMedGoogle Scholar
  31. 31.
    Codella M, Rocca M, Colombo B, Rossi P, Comi G, Filippi M. A preliminary study of magnetization transfer and diffusion tensor MRI of multiple sclerosis patients with fatigue. J Neurol. 2002;249(5):535–537.CrossRefPubMedGoogle Scholar
  32. 32.
    Roelcke U, Kappos L, Lechner-Scott J, et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology. 1997;48(6): 1566–1571.PubMedGoogle Scholar
  33. 33.
    DeLuca J, Genova H, Hillary F, Wylie G. Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J Neurol Sci. 2008;270(1–2):28–39.CrossRefPubMedGoogle Scholar
  34. 34.
    Petersen S, van Mier H, Fiez J, Raichle M. The effects of practice on the functional anatomy of task performance. Proc Natl Acad Sci USA. 1998;95(3):853–860.CrossRefPubMedGoogle Scholar
  35. 35.
    Raichle M, Fiez J, Videen T, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex. 1994;4(1):8–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Koch K, Wagner G, von Consbruch K, et al. Temporal changes in neural activation during practice of information retrieval from short-term memory: an fMRI study. Brain Res. 2006;1107:140–150.CrossRefPubMedGoogle Scholar
  37. 37.
    Lange G, Steffener J, Cook D, et al. Objective evidence of cognitive complaints in Chronic Fatigue Syndrome: a BOLD fMRI study of verbal working memory. Neuroimage. 2005;26(2):513–524.CrossRefPubMedGoogle Scholar
  38. 38.
    Christodoulou C, DeLuca J, Ricker J, et al. Functional magnetic resonance imaging of working memory impairment following traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;71:161–168.CrossRefPubMedGoogle Scholar
  39. 39.
    Chaudhuri A, Behan P. Fatigue and basal ganglia. J Neurol Sci. 2000;179(suppl 1–2):34–42.CrossRefPubMedGoogle Scholar
  40. 40.
    Chaudhuri A, Behan P. Fatigue in neurological populations. Lancet. 2004;363:978–988.CrossRefPubMedGoogle Scholar
  41. 41.
    Tartaglia M, Narayanan S, Arnold D. Mental fatigue alters the pattern and increases the volume of cerebral activation required for a motor task in multiple sclerosis patients with fatigue. Eur J Neurol. 2008;15(4):413–419.CrossRefPubMedGoogle Scholar
  42. 42.
    Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komarroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med. 1994;121:953–959.PubMedGoogle Scholar
  43. 43.
    Buchwald D, Cheney P, Peterson D, et al. A chronic illness characterized by fatigue, neurologic and immunologic disorders, and active human herpes virus type 6 infection. Ann Intern Med. 1992;116(2):103–113.PubMedGoogle Scholar
  44. 44.
    Natelson B, Cohen J, Brassloff I, Lee H. A controlled study of brain magnetic resonance imaging in patients with the chronic fatigue syndrome. J Neurol Sci. 1993;120(2):213–217.CrossRefPubMedGoogle Scholar
  45. 45.
    Schwartz R, Garada B, Komaroff A, et al. Detection of intracranial abnormalities in patients with chronic fatigue syndrome: comparison of MR imaging and SPECT. AJR Am J Roentgenol. 1994;162(4):935–941.PubMedGoogle Scholar
  46. 46.
    Cope H, Pernet A, Kendall B, David A. Cognitive functioning and magnetic resonance imaging in chronic fatigue. Br J Psychiatry. 1995;167(1):86–94.CrossRefPubMedGoogle Scholar
  47. 47.
    Lange G, DeLuca J, Maldjian J, Lee H, Tiersky L, Natelson B. Brain MRI abnormalities exist in a subset of patients with chronic fatigue syndrome. J Neurol Sci. 1999;171(1):3–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Greco A, Tannock C, Brostoff J, Costa D. Brain MR in chronic fatigue syndrome. AJNR Am J Neuroradiol. 1997;18(7): 1265–1269.PubMedGoogle Scholar
  49. 49.
    Cook D, Lange G, DeLuca J, Natelson B. Relationship of brain MRI abnormalities and physical functional status in chronic fatigue syndrome. Int J Neurosci. 2001;107(1–2):1–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Lange G, Holodny A, DeLuca J, et al. Quantitative assessment of cerebral ventricular volumes in chronic fatigue syndrome. Appl Neuropsychol. 2001;8(1):23–30.CrossRefPubMedGoogle Scholar
  51. 51.
    Okada T, Tanaka M, Kuratsune H, Watanabe Y, Sadato N. Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurol. 2004;4(1):14.CrossRefPubMedGoogle Scholar
  52. 52.
    de Lange F, Koers A, Kalkman J, et al. Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain. 2008;131(pt 8): 2172–2180.CrossRefPubMedGoogle Scholar
  53. 53.
    Schwartz R, Garada B, Komaroff A, et al. Detection of intracranial abnormalities in patients with chronic fatigue syndrome: comparison of MR imaging and SPECT. AJR Am J Roentgenol. 1994;162(4):935–941.PubMedGoogle Scholar
  54. 54.
    MacHale S, Lawŕie S, Cavanagh J, et al. Cerebral perfusion in chronic fatigue syndrome and depression. Br J Psychiatry. 2000;176:550–556.CrossRefPubMedGoogle Scholar
  55. 55.
    Costa D, Tannock C, Brostoff J. Brainstem perfusion is impaired in chronic fatigue syndrome. QJM. 1995;88(11):767–773.PubMedGoogle Scholar
  56. 56.
    Fischler B, D’Haenen H, Cluydts R, et al. Comparison of 99m Tc HMPAO SPECT scan between chronic fatigue syndrome, major depression and healthy controls: an exploratory study of clinical correlates of regional cerebral blood flow. Neuropsychobiology. 1996;34(4):175–183.CrossRefPubMedGoogle Scholar
  57. 57.
    Tirelli U, Chierichetti F, Tavio M, et al. Brain positron emission tomography (PET) in chronic fatigue syndrome: preliminary data. Am J Med. 1998;105(3A):54S–58S.CrossRefPubMedGoogle Scholar
  58. 58.
    Siessmeier T, Nix W, Hardt J, Schreckenberger M, Egle U, Bartenstein P. Observer independent analysis of cerebral glucose metabolism in patients with chronic fatigue syndrome. J Neurol Neurosurg Psychiatry. 2003;74(7):922–928.CrossRefPubMedGoogle Scholar
  59. 59.
    Schmaling K, Lewis D, Fiedelak J, Mahurin R, Buchwald D. Single-photon emission computerized tomography and neurocognitive function in patients with chronic fatigue syndrome. Psychosom Med. 2003;65(1):129–136.CrossRefPubMedGoogle Scholar
  60. 60.
    Lange G, Steffener J, Christodoulou C, et al. FMRI of auditory verbal working memory in severe fatiguing illness. Neuroimage. 2000;11(5 suppl 1):S95–S95.CrossRefGoogle Scholar
  61. 61.
    Caseras X, Mataix-Cols D, Giampietro V, et al. Probing the working memory system in chronic fatigue syndrome: a functional magnetic resonance imaging study using the n-back task. Psychosom Med. 2006;68(6):947–955.CrossRefPubMedGoogle Scholar
  62. 62.
    Cook D, O’Connor P, Lange G, Steffener J. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage. 2007;36(1):108–122.CrossRefPubMedGoogle Scholar
  63. 63.
    Tanaka M, Sadato N, Okada T, et al. Reduced responsiveness is an essential feature of chronic fatigue syndrome: a fMRI study. BMC Neurol. 2006;6:9.CrossRefPubMedGoogle Scholar
  64. 64.
    Caseras X, Mataix-Cols D, Rimes K, et al. The neural correlates of fatigue: an exploratory imaginal fatigue provocation study in chronic fatigue syndrome. Psychol Med. 2008;38(7):941–951.CrossRefPubMedGoogle Scholar
  65. 65.
    Omdal R, Sjöholm H, Koldingsnes W, et al. Fatigue in patients with lupus is not associated with disturbances in cerebral blood flow as detected by SPECT. J Neurol. 2005;252:78–83.CrossRefPubMedGoogle Scholar
  66. 66.
    Andersen AB, Law I, Ostrowski S, et al. Self-reported fatigue common among optimally treated HIV patients: no correlation with cerebral FDG-PET scanning abnormalities. Neuroimmunomodulation. 2006;13:69–75.CrossRefPubMedGoogle Scholar
  67. 67.
    Brody AL, Saxena S, Makdelkern MA, et al. Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatry. 2001;50: 171–178.CrossRefPubMedGoogle Scholar
  68. 68.
    Schifitto G, Friedman JH, Oakes D, et al. Fatigue in levodopa-naive subjects with Parkinson disease. Neurology. 2008;71:481–485.CrossRefPubMedGoogle Scholar
  69. 69.
    Weintraub D, Newberg AB, Cary MS, et al. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J Nucl Med. 2005;46(2):227–232.PubMedGoogle Scholar
  70. 70.
    Abe K, Takanashi M, Yanagihara T. Fatigue in patients with Parkinson’s disease. Behav Neurol. 2000;12:103–106.PubMedGoogle Scholar
  71. 71.
    Kohl AD, Wylie GR, Genova HM, Hillary FG, DeLuca J. The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Inj. 2009;23(5):420–432.CrossRefPubMedGoogle Scholar
  72. 72.
    Mosso A. Fatigue. London: Swan Sonnenschein and Co.; 1904.Google Scholar
  73. 73.
    Schapiro, R. The pathophysiology of MS-related fatigue: What is role of wake promotion. Intl J MS Care, Supplement, November, 2002:6–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Kessler Foundation Research CenterWest OrangeUSAand
  2. 2.Department of Physical Medicine and RehabilitationUniversity of Medicine and Dentistry of New Jersey – New Jersey Medical SchoolNewarkUSA

Personalised recommendations