Application of Neuroimaging Methods to Define Cognitive and Brain Abnormalities Associated with HIV

  • Jodi Heaps
  • Jennifer Niehoff
  • Elizabeth Lane
  • Kuryn Kroutil
  • Joseph Boggiano
  • Robert Paul


Human immunodeficiency virus (HIV) is a retrovirus that invades and inactivates T-lymphocyte cells of the immune system leading to Acquired Immune Deficiency Syndrome (AIDS). In 2007, there were 33 million people living with HIV. That year alone, 2.7 million people became infected with the virus, and 2 million people died of HIV-related causes. 1 These numbers are not evenly distributed globally and tend to be disproportionately concentrated in countries least able to financially shoulder the burden of providing medical care to patients. In 2007, an estimated 1.9 million people were newly infected with HIV in sub-Saharan Africa, bringing the total number of people living with HIV to 22 million in that area. The number of people infected in sub-Saharan Africa represents a full 67% of the global total of people with HIV, and 75% of all AIDS deaths in 2007.


Human Immunodeficiency Virus Apparent Diffusion Coefficient Fractional Anisotropy Diffusion Tensor Imaging Human Immunodeficiency Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Joint United Nations Programme on HIV/AIDS. Second guidance paper: joint UN programmes and teams on AIDS: practical guidelines on implementing effective and sustainable joint teams and programmes of support. Geneva, Switzerland: Joint United Nations Programme on HIV/AIDS; 2008.Google Scholar
  2. 2.
    Letendre SL, Cherner M, Ellis RJ, et al. The effects of hepatitis C, HIV, and methamphetamine dependence on neuropsychological performance: biological correlates of disease. AIDS. 2005;19(Suppl 3):S72–S78.CrossRefPubMedGoogle Scholar
  3. 3.
    Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB. Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol. 2006;27(3):656–660.PubMedGoogle Scholar
  4. 4.
    Avison MJ, Nath A, Berger JR. Understanding pathogenesis and treatment of HIV dementia: a role for magnetic resonance? Trends Neurosci. 2002;25(9):468–473.CrossRefPubMedGoogle Scholar
  5. 5.
    Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–1799.CrossRefPubMedGoogle Scholar
  6. 6.
    Nath A, Maragos WF, Avison MJ, Schmitt FA, Berger JR. Acceleration of HIV dementia with methamphetamine and cocaine. J Neurovirol. 2001;7(1):66–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Dube B, Benton T, Cruess DG, Evans DL. Neuropsychiatric manifestations of HIV infection and AIDS. J Psychiatry Neurosci. 2005;30(4):237–246.PubMedGoogle Scholar
  8. 8.
    Hartzell JD, Janke IE, Weintrob AC. Impact of depression on HIV outcomes in the HAART era. J Antimicrob Chemother. 2008;62(2):246–255.CrossRefPubMedGoogle Scholar
  9. 9.
    Valcour V, Paul R. HIV infection and dementia in older adults. Clin Infect Dis. 2006;42(10):1449–1454.CrossRefPubMedGoogle Scholar
  10. 10.
    Hult B, Chana G, Masliah E, Everall I. Neurobiology of HIV. Int Rev Psychiatry. 2008;20(1):3–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Nath A, Schiess N, Venkatesan A, Rumbaugh J, Sacktor N, McArthur J. Evolution of HIV dementia with HIV infection. Int Rev Psychiatry. 2008;20(1):25–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Elovaara I, Poutiainen E, Raininko R, et al. Mild brain atrophy in early HIV infection: the lack of association with cognitive deficits and HIV-specific intrathecal immune response. J Neurol Sci. 1990;99(2–3):121–136.CrossRefPubMedGoogle Scholar
  13. 13.
    Levin HS, Williams DH, Borucki MJ, et al. Magnetic resonance imaging and neuropsychological findings in human immunodeficiency virus infection. J Acquir Immune Defic Syndr. 1990;3(8):757–762.PubMedGoogle Scholar
  14. 14.
    Poutiainen E, Elovaara I, Raininko R, et al. Cognitive performance in HIV-1 infection: relationship to severity of disease and brain atrophy. Acta Neurol Scand. 1993;87(2):88–94.CrossRefPubMedGoogle Scholar
  15. 15.
    Patel SH, Kolson DL, Glosser G, et al. Correlation between percentage of brain parenchymal volume and neurocognitive performance in HIV-infected patients. AJNR Am J Neuroradiol. 2002;23(4):543–549.PubMedGoogle Scholar
  16. 16.
    Broderick DF, Wippold FJ 2nd, Clifford DB, Kido D, Wilson BS. White matter lesions and cerebral atrophy on MR images in patients with and without AIDS dementia complex. AJR Am J Roentgenol. 1993;161(1):177–181.PubMedGoogle Scholar
  17. 17.
    Harrison MJ, Newman SP, Hall-Craggs MA, et al. Evidence of CNS impairment in HIV infection: clinical, neuropsychological, EEG, and MRI/MRS study. J Neurol Neurosurg Psychiatry. 1998;65(3):301–307.CrossRefPubMedGoogle Scholar
  18. 18.
    Jernigan TL, Archibald S, Hesselink JR, et al. Magnetic ­resonance imaging morphometric analysis of cerebral volume loss in human immunodeficiency virus infection. The HNRC Group. Arch Neurol. 1993;50 (3):250–255.PubMedGoogle Scholar
  19. 19.
    Post MJ, Berger JR, Duncan R, Quencer RM, Pall L, Winfield D. Asymptomatic and neurologically symptomatic HIV-seropositive subjects: results of long-term MR imaging and clinical follow-up. Radiology. 1993;188(3):727–733.PubMedGoogle Scholar
  20. 20.
    Post MJ, Tate LG, Quencer RM, et al. CT, MR, and pathology in HIV encephalitis and meningitis. AJR Am J Roentgenol. 1988;151(2):373–380.PubMedGoogle Scholar
  21. 21.
    Grant I, Atkinson JH, Hesselink JR, et al. Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med. 1987;107(6):828–836.PubMedGoogle Scholar
  22. 22.
    Dal Pan GJ, McArthur JH, Aylward E, et al. Patterns of cerebral atrophy in HIV-1-infected individuals: results of a quantitative MRI analysis. Neurology. 1992;42(11):2125–2130.PubMedGoogle Scholar
  23. 23.
    Hestad K, McArthur JH, Dal Pan GJ, et al. Regional brain atrophy in HIV-1 infection: association with specific neuropsychological test performance. Acta Neurol Scand. 1993;88(2):112–118.CrossRefPubMedGoogle Scholar
  24. 24.
    Hall M, Whaley R, Robertson K, Hamby S, Wilkins J, Hall C. The correlation between neuropsychological and neuroanatomic changes over time in asymptomatic and symptomatic HIV-1-infected individuals. Neurology. 1996;46(6):1697–1702.PubMedGoogle Scholar
  25. 25.
    Kieburtz K, Ketonen L, Cox C, et al. Cognitive performance and regional brain volume in human immunodeficiency virus type 1 infection. Arch Neurol. 1996;53(2):155–158.PubMedGoogle Scholar
  26. 26.
    Stout JC, Ellis RJ, Jernigan TL, et al. Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. HIV Neurobehavioral Research Center Group. Arch Neurol. 1998;55(2):161–168.CrossRefPubMedGoogle Scholar
  27. 27.
    Sonnerborg A, Saaf J, Alexius B, Strannegard O, Wahlund LO, Wetterberg L. Quantitative detection of brain aberrations in human immunodeficiency virus type 1-infected individuals by magnetic resonance imaging. J Infect Dis. 1990;162(6):1245–1251.PubMedGoogle Scholar
  28. 28.
    Aylward EH, Henderer JD, McArthur JC, et al. Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology. 1993;43(10):2099–2104.PubMedGoogle Scholar
  29. 29.
    Aylward EH, Brettschneider PD, McArthur JC, et al. Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. Am J Psychiatry. 1995;152(7):987–994.PubMedGoogle Scholar
  30. 30.
    Paul RH, Brickman AM, Navia B, et al. Apathy is associated with volume of the nucleus accumbens in patients infected with HIV. J Neuropsychiatry Clin Neurosci. 2005;17(2):167–171.PubMedGoogle Scholar
  31. 31.
    Post MJ, Berger JR, Quencer RM. Asymptomatic and neurologically symptomatic HIV-seropositive individuals: prospective evaluation with cranial MR imaging. Radiology. 1991;178(1):131–139.PubMedGoogle Scholar
  32. 32.
    Raininko R, Elovaara I, Virta A, Valanne L, Haltia M, Valle SL. Radiological study of the brain at various stages of human immunodeficiency virus infection: early development of brain atrophy. Neuroradiology. 1992;34(3):190–196.CrossRefPubMedGoogle Scholar
  33. 33.
    Castelo JM, Courtney MG, Melrose RJ, Stern CE. Putamen hypertrophy in nondemented patients with human immunodeficiency virus infection and cognitive compromise. Arch Neurol. 2007;64(9):1275–1280.CrossRefPubMedGoogle Scholar
  34. 34.
    Kieburtz KD, Ketonen L, Zettelmaier AE, Kido D, Caine ED, Simon JH. Magnetic resonance imaging findings in HIV cognitive impairment. Arch Neurol. 1990;47(6):643–645.PubMedGoogle Scholar
  35. 35.
    Olsen WL, Longo FM, Mills CM, Norman D. White matter disease in AIDS: findings at MR imaging. Radiology. 1988;169(2):445–448.PubMedGoogle Scholar
  36. 36.
    Chrysikopoulos HS, Press GA, Grafe MR, Hesselink JR, Wiley CA. Encephalitis caused by human immunodeficiency virus: CT and MR imaging manifestations with clinical and pathologic correlation. Radiology. 1990;175(1):185–191.PubMedGoogle Scholar
  37. 37.
    Jarvik JG, Hesselink JR, Kennedy C, et al. Acquired immunodeficiency syndrome. Magnetic resonance patterns of brain involvement with pathologic correlation. Arch Neurol. 1988;45(7):731–736.PubMedGoogle Scholar
  38. 38.
    McMurtray A, Nakamoto B, Shikuma C, Valcour V. Cortical Atrophy and White Matter Hyperintensities in HIV: the Hawaii Aging with HIV Cohort Study. J Stroke Cerebrovasc Dis. 2008;17(4):212–217.CrossRefPubMedGoogle Scholar
  39. 39.
    Post MJ, Levin BE, Berger JR, Duncan R, Quencer RM, Calabro G. Sequential cranial MR findings of asymptomatic and neurologically symptomatic HIV+ subjects. AJNR Am J Neuroradiol. 1992;13(1):359–370.PubMedGoogle Scholar
  40. 40.
    Thurnher MM, Schindler EG, Thurnher SA, Pernerstorfer-Schon H, Kleibl-Popov C, Rieger A. Highly active antiretroviral therapy for patients with AIDS dementia complex: effect on MR imaging findings and clinical course. AJNR Am J Neuroradiol. 2000;21(4):670–678.PubMedGoogle Scholar
  41. 41.
    Filippi CG, Sze G, Farber SJ, Shahmanesh M, Selwyn PA. Regression of HIV encephalopathy and basal ganglia signal intensity abnormality at MR imaging in patients with AIDS after the initiation of protease inhibitor therapy. Radiology. 1998;206(2):491–498.PubMedGoogle Scholar
  42. 42.
    Boska MD, Mosley RL, Nawab M, et al. Advances in neuroimaging for HIV-1 associated neurological dysfunction: clues to the diagnosis, pathogenesis and therapeutic monitoring. Curr HIV Res. 2004;2(1):61–78.CrossRefPubMedGoogle Scholar
  43. 43.
    Foerster BR, Thurnher MM, Malani PN, Petrou M, Carets-Zumelzu F, Sundgren PC. Intracranial infections: clinical and imaging characteristics. Acta Radiol. 2007;48(8):875–893.CrossRefPubMedGoogle Scholar
  44. 44.
    Chang L, Ernst T, Witt MD, Ames N, Gaiefsky M, Miller E. Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. Neuroimage. 2002;17(3):1638–1648.CrossRefPubMedGoogle Scholar
  45. 45.
    Chang L, Ernst T, Leonido-Yee M, Walot I, Singer E. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology. 1999;52(1):100–108.PubMedGoogle Scholar
  46. 46.
    Meyerhoff DJ, Bloomer C, Cardenas V, Norman D, Weiner MW, Fein G. Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV+ patients. Neurology. 1999;52(5):995–1003.PubMedGoogle Scholar
  47. 47.
    Ernst T, Chang L, Arnold S. Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage. 2003;19(4):1686–1693.CrossRefPubMedGoogle Scholar
  48. 48.
    Paul RH, Ernst T, Brickman AM, et al. Relative sensitivity of magnetic resonance spectroscopy and quantitative ­magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. J Int Neuropsychol Soc. 2008;14(5):725–733.CrossRefPubMedGoogle Scholar
  49. 49.
    Sacktor N, Skolasky RL, Ernst T, et al. A multicenter study of two magnetic resonance spectroscopy techniques in individuals with HIV dementia. J Magn Reson Imaging. 2005;21(4):325–333.CrossRefPubMedGoogle Scholar
  50. 50.
    Ernst T, Chang L. Effect of aging on brain metabolism in antiretroviral-naive HIV patients. AIDS. 2004;18(Suppl 1):S61–S67.PubMedGoogle Scholar
  51. 51.
    Paul RH, Yiannoutsos CT, Miller EN, et al. Proton MRS and neuropsychological correlates in AIDS dementia complex: evidence of subcortical specificity. J Neuropsychiatry Clin Neurosci. 2007;19(3):283–292.PubMedGoogle Scholar
  52. 52.
    Chang L, Ernst T, Speck O, Grob CS. Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. Am J Psychiatry. 2005;162(2):361–369.CrossRefPubMedGoogle Scholar
  53. 53.
    Chang L, Cloak C, Yakupov R, Ernst T. Combined and independent effects of chronic marijuana use and HIV on brain metabolites. J Neuroimmune Pharmacol. 2006;1(1):65–76.CrossRefPubMedGoogle Scholar
  54. 54.
    Pfefferbaum A, Adalsteinsson E, Sullivan EV. Cortical NAA deficits in HIV infection without dementia: influence of alcoholism comorbidity. Neuropsychopharmacology. 2005;30(7):1392–1399.PubMedGoogle Scholar
  55. 55.
    Lee PL, Yiannoutsos CT, Ernst T, et al. A multi-center 1H MRS study of the AIDS dementia complex: validation and preliminary analysis. J Magn Reson Imaging. 2003;17(6):625–633.CrossRefPubMedGoogle Scholar
  56. 56.
    Chang L, Lee PL, Yiannoutsos CT, et al. A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage. 2004;23(4):1336–1347.CrossRefPubMedGoogle Scholar
  57. 57.
    Melrose RJ, Tinaz S, Castelo JM, Courtney MG, Stern CE. Compromised fronto-striatal functioning in HIV: an fMRI investigation of semantic event sequencing. Behav Brain Res. 2008;188(2):337–347.CrossRefPubMedGoogle Scholar
  58. 58.
    Chang L, Speck O, Miller EN, et al. Neural correlates of attention and working memory deficits in HIV patients. Neurology. 2001;57(6):1001–1007.PubMedGoogle Scholar
  59. 59.
    Chang L, Tomasi D, Yakupov R, et al. Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol. 2004;56(2):259–272.CrossRefPubMedGoogle Scholar
  60. 60.
    Ernst T, Chang L, Jovicich J, Ames N, Arnold S. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology. 2002;59(9):1343–1349.PubMedGoogle Scholar
  61. 61.
    Castelo JM, Sherman SJ, Courtney MG, Melrose RJ, Stern CE. Altered hippocampal-prefrontal activation in HIV patients during episodic memory encoding. Neurology. 2006;66(11):1688–1695.CrossRefPubMedGoogle Scholar
  62. 62.
    Maki PM, Cohen MH, Weber K, et al. Impairments in memory and hippocampal function in HIV-positive vs HIV-negative women: a preliminary study. Neurology. 2009;72(19):1661–1668.CrossRefPubMedGoogle Scholar
  63. 63.
    Juengst SB, Aizenstein HJ, Figurski J, Lopez OL, Becker JT. Alterations in the hemodynamic response function in cognitively impaired HIV/AIDS subjects. J Neurosci Methods. 2007;163(2):208–212.CrossRefPubMedGoogle Scholar
  64. 64.
    Tucker KA, Robertson KR, Lin W, et al. Neuroimaging in human immunodeficiency virus infection. J Neuroimmunol. 2004;157(1–2):153–162.CrossRefPubMedGoogle Scholar
  65. 65.
    Thurnher MM, Castillo M, Stadler A, Rieger A, Schmid B, Sundgren PC. Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. AJNR Am J Neuroradiol. 2005;26(9):2275–2281.PubMedGoogle Scholar
  66. 66.
    Ragin AB, Storey P, Cohen BA, Epstein LG, Edelman RR. Whole brain diffusion tensor imaging in HIV-associated cognitive impairment. AJNR Am J Neuroradiol. 2004;25(2):195–200.PubMedGoogle Scholar
  67. 67.
    Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG. Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol. 2005;11(3):292–298.CrossRefPubMedGoogle Scholar
  68. 68.
    Chen Y, An H, Zhu H, et al. White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. Neuroimage. 2009;47(4):1154–1162.CrossRefPubMedGoogle Scholar
  69. 69.
    Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed. 1997;10(4–5):237–249.CrossRefPubMedGoogle Scholar
  70. 70.
    Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med. 1997;37(2):226–235.CrossRefPubMedGoogle Scholar
  71. 71.
    Ances BM, Roc AC, Wang J, et al. Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology. 2006;66(6):862–866.CrossRefPubMedGoogle Scholar
  72. 72.
    Silva AC. Perfusion-based fMRI: insights from animal models. J Magn Reson Imaging. 2005;22(6):745–750.CrossRefPubMedGoogle Scholar
  73. 73.
    Frank LR, Lu K, Wong EC. Perfusion tensor imaging. Magn Reson Med. 2008;60(6):1284–1291.CrossRefPubMedGoogle Scholar
  74. 74.
    Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med. 2006;55(6):1334–1341.CrossRefPubMedGoogle Scholar
  75. 75.
    Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med. 1999;42(6):1123–1127.CrossRefPubMedGoogle Scholar
  76. 76.
    Correia S, Lee SY, Voorn T, et al. Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. Neuroimage. 2008;42(2):568–581.CrossRefPubMedGoogle Scholar
  77. 77.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15(7–8):435–455.CrossRefPubMedGoogle Scholar
  78. 78.
    Paul RH, Laidlaw DH, Tate DF, et al. Neuropsychological and neuroimaging outcome of HIV-associated progressive multifocal leukoencephalopathy in the era of antiretroviral therapy. J Integr Neurosci. 2007;6(1):191–203.CrossRefPubMedGoogle Scholar
  79. 79.
    Schmahmann JD, Pandya DN, Wang R, et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain. 2007;130(Pt 3):630–653.CrossRefPubMedGoogle Scholar
  80. 80.
    Wedeen VJ, Wang RP, Schmahmann JD, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 2008;41(4):1267–1277.CrossRefPubMedGoogle Scholar
  81. 81.
    Benaron DA, Contag PR, Contag CH. Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond B Biol Sci. 1997;352(1354):755–761.CrossRefPubMedGoogle Scholar
  82. 82.
    Murata Y, Katayama Y, Oshima H, et al. Changes in cerebral blood oxygenation induced by deep brain stimulation: study by near-infrared spectroscopy (NIRS). Keio J Med. 2000;49(Suppl 1):A61–A63.PubMedGoogle Scholar
  83. 83.
    Sakatani K, Katayama Y, Yamamoto T, Suzuki S. Changes in cerebral blood oxygenation of the frontal lobe induced by direct electrical stimulation of thalamus and globus pallidus: a near infrared spectroscopy study. J Neurol Neurosurg Psychiatry. 1999;67(6):769–773.CrossRefPubMedGoogle Scholar
  84. 84.
    Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–319.CrossRefPubMedGoogle Scholar
  85. 85.
    Aizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol. 2008;65(11):1509–1517.CrossRefPubMedGoogle Scholar
  86. 86.
    Gomperts SN, Rentz DM, Moran E, et al. Imaging amyloid deposition in Lewy body diseases. Neurology. 2008;71(12):903–910.CrossRefPubMedGoogle Scholar
  87. 87.
    Maetzler W, Liepelt I, Reimold M, et al. Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis. 2009;34(1):107–112.CrossRefPubMedGoogle Scholar
  88. 88.
    Stebbins GT, Smith CA, Bartt RE, et al. HIV-associated alterations in normal-appearing white matter: a voxel-wise diffusion tensor imaging study. J Acquir Immune Defic Syndr. 2007;46(5):564–573.CrossRefPubMedGoogle Scholar
  89. 89.
    Moore DJ, Masliah E, Rippeth JD, et al. Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS. 2006;20(6):879–887.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jodi Heaps
  • Jennifer Niehoff
  • Elizabeth Lane
  • Kuryn Kroutil
  • Joseph Boggiano
  • Robert Paul
    • 1
  1. 1.Department of Psychology, Division of Behavioral NeuroscienceUniversity of MissouriSt. LouisUSA

Personalised recommendations