Advertisement

Eating Disorders

  • Angelo Del Parigi
  • Ellen Schur
Chapter

Abstract

As commonly defined, eating disorders are persistent abnormalities of eating behavior that affect physical or mental health. Traditionally, eating disorders identify psychiatric conditions characterized by compulsive eating or extreme avoidance of eating, epitomized by bulimia nervosa (BN) and anorexia nervosa (AN), respectively. Another rather well-characterized eating disorder is binge eating disorder (BED), which can lead to weight gain, obesity, and related comorbidities, but it is not specific to any metabolic condition or disease. Although not included among eating disorders, we submit that “garden variety” (i.e., nonspecific) chronic overeating that leads to weight gain and obesity meets the basic criterion for eating disorders. Overeaters challenge the homeostasis of energy balance by ingesting food in excess of their needs and clearly develop a pathological condition, overweight–obesity, that undermines their physical health, meeting our common definition of an eating disorder. In this chapter, therefore, we will take a comprehensive approach and illustrate the neuroimaging evidence accrued on nonspecific overeating, BED, bulimia nervosa, and anorexia nervosa.

Keywords

Single Photon Emission Compute Tomography Anorexia Nervosa Anterior Cingulate Cortex Eating Disorder Binge Eating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–295.PubMedGoogle Scholar
  2. 2.
    DelParigi A, Pannacciulli N, Le DN, Tataranni PA. In pursuit of neural risk factors for weight gain in humans. Neurobiol Aging. 2005;26(suppl 1):50–55.PubMedGoogle Scholar
  3. 3.
    Karhunen LJ, Vanninen EJ, Kuikka JT, Lappalainen RI, Tiihonen J, Uusitupa MI. Regional cerebral blood flow during exposure to food in obese binge eating women. Psychiatry Res. 2000;99(1):29–42.PubMedGoogle Scholar
  4. 4.
    Rothemund Y, Preuschhof C, Bohner G, et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage. 2007;37(2):410–421.PubMedGoogle Scholar
  5. 5.
    Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–357.PubMedGoogle Scholar
  6. 6.
    Stoeckel LE, Weller RE, Cook EW, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage. 2008;41(2):636–647.PubMedGoogle Scholar
  7. 7.
    DelParigi A, Chen K, Salbe AD, Reiman EM, Tataranni PA. Sensory experience of food and obesity: a positron emission tomography study of the brain regions affected by tasting a liquid meal after a prolonged fast. Neuroimage. 2005;24(2):436–443.PubMedGoogle Scholar
  8. 8.
    Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: food-craving activation during fMRI. Neuroimage. 2004;23(4):1486–1493.PubMedGoogle Scholar
  9. 9.
    de Araujo IE, Rolls ET, Kringelbach ML, McGlone F, Phillips N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci. 2003;18(7):2059–2068.PubMedGoogle Scholar
  10. 10.
    DelParigi A, Chen K, Salbe AD, et al. Persistence of abnormal neural responses to a meal in postobese individuals. Int J Obes Relat Metab Disord. 2004;28(3):370–377.PubMedGoogle Scholar
  11. 11.
    Del Parigi A, Gautier JF, Chen K, et al. Neuroimaging and obesity: mapping the brain responses to hunger and satiation in humans using positron emission tomography. Ann N Y Acad Sci. 2002;967:389–397.PubMedGoogle Scholar
  12. 12.
    Gautier JF, Del Parigi A, Chen K, et al. Effect of satiation on brain activity in obese and lean women. Obes Res. 2001;9(11):676–684.PubMedGoogle Scholar
  13. 13.
    Tataranni PA, DelParigi A. Functional neuroimaging: a new generation of human brain studies in obesity research. Obes Rev. 2003;4(4):229–238.PubMedGoogle Scholar
  14. 14.
    Del Parigi A, Chen K, Gautier JF, et al. Sex differences in the human brain’s response to hunger and satiation. Am J Clin Nutr. 2002;75(6):1017–1022.PubMedGoogle Scholar
  15. 15.
    Matsuda M, Liu Y, Mahankali S, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48(9):1801–1806.PubMedGoogle Scholar
  16. 16.
    Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain. 2001;124(Pt 9):1720–1733.PubMedGoogle Scholar
  17. 17.
    DelParigi A, Chen K, Salbe AD, et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes (Lond). 2007;31(3):440–448.Google Scholar
  18. 18.
    Volkow ND, Wang GJ, Telang F, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage. 2008;42(4):1537–1543.PubMedGoogle Scholar
  19. 19.
    Uher R, Murphy T, Brammer MJ, et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry. 2004;161(7):1238–1246.PubMedGoogle Scholar
  20. 20.
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Version IV. Washington, DC: American Psychiatric Association; 1994.Google Scholar
  21. 21.
    Striegel-Moore RH, Franko DL. Should binge eating disorder be included in the DSM-V? A critical review of the state of the evidence. Annu Rev Clin Psychol. 2008;4:305–324.PubMedGoogle Scholar
  22. 22.
    Andreason PJ, Altemus M, Zametkin AJ, King AC, Lucinio J, Cohen RM. Regional cerebral glucose metabolism in bulimia nervosa. Am J Psychiatry. 1992;149(11):1506–1513.PubMedGoogle Scholar
  23. 23.
    Wu JC, Hagman J, Buchsbaum MS, et al. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography. Am J Psychiatry. 1990;147(3):309–312.PubMedGoogle Scholar
  24. 24.
    Hagman JO, Buchsbaum MS, Wu JC, Rao SJ, Reynolds CA, Blinder BJ. Comparison of regional brain metabolism in bulimia nervosa and affective disorder assessed with positron emission tomography. J Affect Disord. 1990;19(3):153–162.PubMedGoogle Scholar
  25. 25.
    Nozoe S, Naruo T, Yonekura R, et al. Comparison of regional cerebral blood flow in patients with eating disorders. Brain Res Bull. 1995;36(3):251–255.PubMedGoogle Scholar
  26. 26.
    Woolley JD, Gorno-Tempini ML, Seeley WW, et al. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology. 2007;69(14):1424–1433.PubMedGoogle Scholar
  27. 27.
    Batterham RL, ffytche DH, Rosenthal JM, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007;450(7166):106–109.PubMedGoogle Scholar
  28. 28.
    Kuikka JT, Tammela L, Karhunen L, et al. Reduced ­serotonin transporter binding in binge eating women. Psychopharmacology (Berl). 2001;155(3):310–314.Google Scholar
  29. 29.
    Tammela LI, Rissanen A, Kuikka JT, et al. Treatment improves serotonin transporter binding and reduces binge eating. Psychopharmacology (Berl). 2003;170(1):89–93.Google Scholar
  30. 30.
    Garfinkel PE, Lin E, Goering P, et al. Bulimia nervosa in a Canadian community sample: prevalence and comparison of subgroups. Am J Psychiatry. 1995;152(7):1052–1058.PubMedGoogle Scholar
  31. 31.
    Bushnell JA, Wells JE, Hornblow AR, Oakley-Browne MA, Joyce P. Prevalence of three bulimia syndromes in the general population. Psychol Med. 1990;20(3):671–680.PubMedGoogle Scholar
  32. 32.
    Fairburn CG, Cooper Z, Doll HA, Norman P, O’Connor M. The natural course of bulimia nervosa and binge eating ­disorder in young women. Arch Gen Psychiatry. 2000;57(7):659–665.PubMedGoogle Scholar
  33. 33.
    Wilson GT, Fairburn CC, Agras WS, Walsh BT, Kraemer H. Cognitive-behavioral therapy for bulimia nervosa: time course and mechanisms of change. J Consult Clin Psychol. 2002;70(2):267–274.PubMedGoogle Scholar
  34. 34.
    Walsh BT. Pharmacologic treatment of anorexia nervosa and bulimia nervosa. In: Fairburn CG, Brownell KD, eds. Eating Disorders and Obesity: A Comprehensive Handbook. New York, NY: Guilford Press; 2002:325–329.Google Scholar
  35. 35.
    Krieg JC, Lauer C, Pirke KM. Structural brain abnormalities in patients with bulimia nervosa. Psychiatry Res. 1989;27(1):39–48.PubMedGoogle Scholar
  36. 36.
    Hoffman GW, Ellinwood EH Jr, Rockwell WJ, Herfkens RJ, Nishita JK, Guthrie LF. Cerebral atrophy in bulimia. Biol Psychiatry. 1989;25(7):894–902.PubMedGoogle Scholar
  37. 37.
    Wagner A, Greer P, Bailer UF, et al. Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa. Biol Psychiatry. 2006;59(3):291–293.PubMedGoogle Scholar
  38. 38.
    Delvenne V, Goldman S, Simon Y, De Maertelaer V, Lotstra F. Brain hypometabolism of glucose in bulimia ­nervosa. Int J Eat Disord. 1997;21(4):313–320.PubMedGoogle Scholar
  39. 39.
    Krieg JC, Holthoff V, Schreiber W, Pirke KM, Herholz K. Glucose metabolism in the caudate nuclei of patients with eating disorders, measured by PET. Eur Arch Psychiatry Clin Neurosci. 1991;240(6):331–333.PubMedGoogle Scholar
  40. 40.
    Delvenne V, Goldman S, De Maertelaer V, Lotstra F. Brain glucose metabolism in eating disorders assessed by positron emission tomography. Int J Eat Disord. 1999;25(1):29–37.PubMedGoogle Scholar
  41. 41.
    Frank GK, Kaye WH, Greer P, Meltzer CC, Price JC. Regional cerebral blood flow after recovery from bulimia nervosa. Psychiatry Res. 2000;100(1):31–39.PubMedGoogle Scholar
  42. 42.
    Hesse S, Barthel H, Schwarz J, Sabri O, Muller U. Advances in in vivo imaging of serotonergic neurons in neuropsychiatric disorders. Neurosci Biobehav Rev. 2004;28(6):547–563.PubMedGoogle Scholar
  43. 43.
    Barbarich NC, Kaye WH, Jimerson D. Neurotransmitter and imaging studies in anorexia nervosa: new targets for treatment. Curr Drug Targets CNS Neurol Disord. 2003;2(1):61–72.PubMedGoogle Scholar
  44. 44.
    Tiihonen J, Keski-Rahkonen A, Lopponen M, et al. Brain serotonin 1A receptor binding in bulimia nervosa. Biol Psychiatry. 2004;55(8):871–873.PubMedGoogle Scholar
  45. 45.
    Frank GK, Wagner A, Achenbach S, et al. Altered brain activity in women recovered from bulimic-type eating ­disorders after a glucose challenge: a pilot study. Int J Eat Disord. 2006;39(1):76–79.PubMedGoogle Scholar
  46. 46.
    Tauscher J, Pirker W, Willeit M, et al. [123I] beta-CIT and single photon emission computed tomography reveal reduced brain serotonin transporter availability in bulimia nervosa. Biol Psychiatry. 2001;49(4):326–332.PubMedGoogle Scholar
  47. 47.
    Kaye WH, Frank GK, Meltzer CC, et al. Altered serotonin 2A receptor activity in women who have recovered from bulimia nervosa. Am J Psychiatry. 2001;158(7):1152–1155.PubMedGoogle Scholar
  48. 48.
    Kaye WH, Frank GK, Bailer UF, et al. Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies. Physiol Behav. 2005;85(1):73–81.PubMedGoogle Scholar
  49. 49.
    Goethals I, Vervaet M, Audenaert K, et al. Comparison of cortical 5-HT2A receptor binding in bulimia nervosa patients and healthy volunteers. Am J Psychiatry. 2004;161(10):1916–1918.PubMedGoogle Scholar
  50. 50.
    Bencherif B, Guarda AS, Colantuoni C, Ravert HT, Dannals RF, Frost JJ. Regional mu-opioid receptor binding in insular cortex is decreased in bulimia nervosa and correlates inversely with fasting behavior. J Nucl Med. 2005;46(8):1349–1351.PubMedGoogle Scholar
  51. 51.
    Rolls ET. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav. 2005;85(1):45–56.PubMedGoogle Scholar
  52. 52.
    Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7(2):189–195.PubMedGoogle Scholar
  53. 53.
    Uher R, Murphy T, Friederich HC, et al. Functional neuroanatomy of body shape perception in healthy and eating-disordered women. Biol Psychiatry. 2005;58(12):990–997.PubMedGoogle Scholar
  54. 54.
    Bailer UF, Frank GK, Henry SE, et al. Serotonin transporter binding after recovery from eating disorders. Psychopharmacology (Berl). 2007;195(3):315–324.Google Scholar
  55. 55.
    Zipfel S, Lowe B, Reas DL, Deter HC, Herzog W. Long-term prognosis in anorexia nervosa: lessons from a 21-year follow-up study. Lancet. 2000;355(9205):721–722.PubMedGoogle Scholar
  56. 56.
    Bulik CM, Berkman ND, Brownley KA, Sedway JA, Lohr KN. Anorexia nervosa treatment: a systematic review of randomized controlled trials. Int J Eat Disord. 2007;40(4):310–320.PubMedGoogle Scholar
  57. 57.
    Hendren RL, De Backer I, Pandina GJ. Review of neuroimaging studies of child and adolescent psychiatric disorders from the past 10 years. J Am Acad Child Adolesc Psychiatry. 2000;39(7):815–828.PubMedGoogle Scholar
  58. 58.
    Kerem NC, Katzman DK. Brain structure and function in adolescents with anorexia nervosa. Adolesc Med. 2003;14(1):109–118.PubMedGoogle Scholar
  59. 59.
    Mazzetti di Pietralata G. Imaging techniques in the management of anorexia and bulimia nervosa. Eat Weight Disord. 2002;7(2):146–151.PubMedGoogle Scholar
  60. 60.
    Herholz K. Neuroimaging in anorexia nervosa. Psychiatry Res. 1996;62(1):105–110.PubMedGoogle Scholar
  61. 61.
    Krieg JC. Eating disorders as assessed by cranial computerized tomography (CCT, dSPECT, PET). Adv Exp Med Biol. 1991;291:223–229.PubMedGoogle Scholar
  62. 62.
    Enzmann DR, Lane B. Cranial computed tomography findings in anorexia nervosa. J Comput Assist Tomogr. 1977;1(4):410–414.PubMedGoogle Scholar
  63. 63.
    Krieg JC, Pirke KM, Lauer C, Backmund H. Endocrine, metabolic, and cranial computed tomographic findings in anorexia nervosa. Biol Psychiatry. 1988;23(4):377–387.PubMedGoogle Scholar
  64. 64.
    Datlof S, Coleman PD, Forbes GB, Kreipe RE. Ventricular dilation on CAT scans of patients with anorexia nervosa. Am J Psychiatry. 1986;143(1):96–98.PubMedGoogle Scholar
  65. 65.
    Dolan RJ, Mitchell J, Wakeling A. Structural brain changes in patients with anorexia nervosa. Psychol Med. 1988;18(2):349–353.PubMedGoogle Scholar
  66. 66.
    Lankenau H, Swigar ME, Bhimani S, Luchins D, Quinlan DM. Cranial CT scans in eating disorder patients and ­controls. Compr Psychiatry. 1985;26(2):136–147.PubMedGoogle Scholar
  67. 67.
    Palazidou E, Robinson P, Lishman WA. Neuroradiological and neuropsychological assessment in anorexia nervosa. Psychol Med. 1990;20(3):521–527.PubMedGoogle Scholar
  68. 68.
    Heinz ER, Martinez J, Haenggeli A. Reversibility of cerebral atrophy in anorexia nervosa and Cushing’s syndrome. J Comput Assist Tomogr. 1977;1(4):415–418.PubMedGoogle Scholar
  69. 69.
    Kohlmeyer K, Lehmkuhl G, Poutska F. Computed tomography of anorexia nervosa. AJNR Am J Neuroradiol. 1983;4(3):437–438.PubMedGoogle Scholar
  70. 70.
    Artmann H, Grau H, Adelmann M, Schleiffer R. Reversible and non-reversible enlargement of cerebrospinal fluid spaces in anorexia nervosa. Neuroradiology. 1985;27(4):304–312.PubMedGoogle Scholar
  71. 71.
    Kingston K, Szmukler G, Andrewes D, Tress B, Desmond P. Neuropsychological and structural brain changes in anorexia nervosa before and after refeeding. Psychol Med. 1996;26(1):15–28.PubMedGoogle Scholar
  72. 72.
    Neumarker KJ, Bzufka WM, Dudeck U, Hein J, Neumarker U. Are there specific disabilities of number processing in adolescent patients with Anorexia nervosa? Evidence from clinical and neuropsychological data when compared to morphometric measures from magnetic resonance ­imaging. Eur Child Adolesc Psychiatry. 2000;9(suppl 2):II111–II121.PubMedGoogle Scholar
  73. 73.
    Golden NH, Ashtari M, Kohn MR, et al. Reversibility of cerebral ventricular enlargement in anorexia nervosa, ­demonstrated by quantitative magnetic resonance imaging. J Pediatr. 1996;128(2):296–301.PubMedGoogle Scholar
  74. 74.
    Swayze VW 2nd, Andersen A, Arndt S, et al. Reversibility of brain tissue loss in anorexia nervosa assessed with a computerized Talairach 3-D proportional grid. Psychol Med. 1996;26(2):381–390.PubMedGoogle Scholar
  75. 75.
    Swayze VW 2nd, Andersen AE, Andreasen NC, Arndt S, Sato Y, Ziebell S. Brain tissue volume segmentation in patients with anorexia nervosa before and after weight ­normalization. Int J Eat Disord. 2003;33(1):33–44.PubMedGoogle Scholar
  76. 76.
    Sein P, Searson S, Nicol AR, Hall K. Anorexia nervosa and pseudo-atrophy of the brain. Br J Psychiatry. 1981;139:257–258.PubMedGoogle Scholar
  77. 77.
    Hoffman GW Jr, Ellinwood EH Jr, Rockwell WJ, Herfkens RJ, Nishita JK, Guthrie LF. Cerebral atrophy in anorexia nervosa: a pilot study. Biol Psychiatry. 1989;26(3):321–324.PubMedGoogle Scholar
  78. 78.
    Kornreich L, Shapira A, Horev G, Danziger Y, Tyano S, Mimouni M. CT and MR evaluation of the brain in patients with anorexia nervosa. AJNR Am J Neuroradiol. 1991;12(6):1213–1216.PubMedGoogle Scholar
  79. 79.
    Katzman DK, Lambe EK, Mikulis DJ, Ridgley JN, Goldbloom DS, Zipursky RB. Cerebral gray matter and white matter volume deficits in adolescent girls with anorexia nervosa. J Pediatr. 1996;129(6):794–803.PubMedGoogle Scholar
  80. 80.
    Katzman DK, Zipursky RB, Lambe EK, Mikulis DJ. A ­longitudinal magnetic resonance imaging study of brain changes in adolescents with anorexia nervosa. Arch Pediatr Adolesc Med. 1997;151(8):793–797.PubMedGoogle Scholar
  81. 81.
    Giordano GD, Renzetti P, Parodi RC, et al. Volume ­measurement with magnetic resonance imaging of hippocampus-amygdala formation in patients with anorexia nervosa. J Endocrinol Invest. 2001;24(7):510–514.PubMedGoogle Scholar
  82. 82.
    Muhlau M, Gaser C, Ilg R, et al. Gray matter decrease of the anterior cingulate cortex in anorexia nervosa. Am J Psychiatry. 2007;164(12):1850–1857.PubMedGoogle Scholar
  83. 83.
    Lambe EK, Katzman DK, Mikulis DJ, Kennedy SH, Zipursky RB. Cerebral gray matter volume deficits after weight recovery from anorexia nervosa. Arch Gen Psychiatry. 1997;54(6):537–542.PubMedGoogle Scholar
  84. 84.
    Connan F, Murphy F, Connor SE, et al. Hippocampal ­volume and cognitive function in anorexia nervosa. Psychiatry Res. 2006;146(2):117–125.PubMedGoogle Scholar
  85. 85.
    McCormick LM, Keel PK, Brumm MC, et al. Implications of starvation-induced change in right dorsal anterior ­cingulate volume in anorexia nervosa. Int J Eat Disord. 2008;41(7):602–610.PubMedGoogle Scholar
  86. 86.
    Kohn MR, Ashtari M, Golden NH, et al. Structural brain changes and malnutrition in anorexia nervosa. Ann N Y Acad Sci. 1997;817:398–399.PubMedGoogle Scholar
  87. 87.
    Katzman DK, Christensen B, Young AR, Zipursky RB. Starving the brain: structural abnormalities and cognitive impairment in adolescents with anorexia nervosa. Semin Clin Neuropsychiatry. 2001;6(2):146–152.PubMedGoogle Scholar
  88. 88.
    Delvenne V, Lotstra F, Goldman S, et al. Brain hypometabolism of glucose in anorexia nervosa: a PET scan study. Biol Psychiatry. 1995;37(3):161–169.PubMedGoogle Scholar
  89. 89.
    Delvenne V, Goldman S, De Maertelaer V, Simon Y, Luxen A, Lotstra F. Brain hypometabolism of glucose in anorexia nervosa: normalization after weight gain. Biol Psychiatry. 1996;40(8):761–768.PubMedGoogle Scholar
  90. 90.
    Delvenne V, Goldman S, Biver F, et al. Brain hypometabolism of glucose in low-weight depressed patients and in anorectic patients: a consequence of starvation? J Affect Disord. 1997;44(1):69–77.PubMedGoogle Scholar
  91. 91.
    Kuruoglu AC, Kapucu O, Atasever T, Arikan Z, Isik E, Unlu M. Technetium-99 m-HMPAO brain SPECT in anorexia nervosa. J Nucl Med. 1998;39(2):304–306.PubMedGoogle Scholar
  92. 92.
    Frank GK, Bailer UF, Meltzer CC, et al. Regional cerebral blood flow after recovery from anorexia or bulimia nervosa. Int J Eat Disord. 2007;40(6):488–492.PubMedGoogle Scholar
  93. 93.
    Takano A, Shiga T, Kitagawa N, et al. Abnormal neuronal network in anorexia nervosa studied with I-123-IMP SPECT. Psychiatry Res. 2001;107(1):45–50.PubMedGoogle Scholar
  94. 94.
    Miller KK, Deckersbach T, Rauch SL, et al. Testosterone administration attenuates regional brain hypometabolism in women with anorexia nervosa. Psychiatry Res. 2004;132(3):197–207.PubMedGoogle Scholar
  95. 95.
    Matsumoto R, Kitabayashi Y, Narumoto J, et al. Regional cerebral blood flow changes associated with interoceptive awareness in the recovery process of anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(7):1265–1270.PubMedGoogle Scholar
  96. 96.
    Kojima S, Nagai N, Nakabeppu Y, et al. Comparison of regional cerebral blood flow in patients with anorexia nervosa before and after weight gain. Psychiatry Res. 2005;140(3):251–258.PubMedGoogle Scholar
  97. 97.
    Naruo T, Nakabeppu Y, Deguchi D, et al. Decreases in blood perfusion of the anterior cingulate gyri in Anorexia Nervosa Restricters assessed by SPECT image analysis. BMC Psychiatry. 2001;1:2.PubMedGoogle Scholar
  98. 98.
    Rastam M, Bjure J, Vestergren E, et al. Regional cerebral blood flow in weight-restored anorexia nervosa: a preliminary study. Dev Med Child Neurol. 2001;43(4):239–242.PubMedGoogle Scholar
  99. 99.
    Ohrmann P, Kersting A, Suslow T, et al. Proton magnetic resonance spectroscopy in anorexia nervosa: correlations with cognition. Neuroreport. 2004;15(3):549–553.PubMedGoogle Scholar
  100. 100.
    Lask B, Gordon I, Christie D, Frampton I, Chowdhury U, Watkins B. Functional neuroimaging in early-onset anorexia nervosa. Int J Eat Disord. 2005;37(Suppl):S49–S51; discussion S87–S49.PubMedGoogle Scholar
  101. 101.
    Kaye WH, Gwirtsman HE, George DT, Jimerson DC, Ebert MH. CSF 5-HIAA concentrations in anorexia nervosa: reduced values in underweight subjects normalize after weight gain. Biol Psychiatry. 1988;23(1):102–105.PubMedGoogle Scholar
  102. 102.
    Wolfe BE, Metzger E, Jimerson DC. Research update on serotonin function in bulimia nervosa and anorexia ­nervosa. Psychopharmacol Bull. 1997;33(3):345–354.PubMedGoogle Scholar
  103. 103.
    Audenaert K, Van Laere K, Dumont F, et al. Decreased 5-HT2a receptor binding in patients with anorexia nervosa. J Nucl Med. 2003;44(2):163–169.PubMedGoogle Scholar
  104. 104.
    Bailer UF, Frank GK, Henry SE, et al. Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. Biol Psychiatry. 2007;61(9):1090–1099.PubMedGoogle Scholar
  105. 105.
    Goethals I, Vervaet M, Audenaert K, et al. Differences of cortical 5-HT2A receptor binding index with SPECT in subtypes of anorexia nervosa: relationship with personality traits? J Psychiatr Res. 2007;41(5):455–458.PubMedGoogle Scholar
  106. 106.
    Frank GK, Kaye WH, Meltzer CC, et al. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol Psychiatry. 2002;52(9):896–906.PubMedGoogle Scholar
  107. 107.
    Bailer UF, Price JC, Meltzer CC, et al. Altered 5-HT(2A) receptor binding after recovery from bulimia-type anorexia nervosa: relationships to harm avoidance and drive for thinness. Neuropsychopharmacology. 2004;29(6):1143–1155.PubMedGoogle Scholar
  108. 108.
    Bailer UF, Frank GK, Henry SE, et al. Altered brain ­serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl11C]WAY-100635. Arch Gen Psychiatry. 2005;62(9):1032–1041.PubMedGoogle Scholar
  109. 109.
    Galusca B, Costes N, Zito NG, et al. Organic background of restrictive-type anorexia nervosa suggested by increased serotonin(1A) receptor binding in right frontotemporal ­cortex of both lean and recovered patients: [(18)F]MPPF PET scan study. Biol Psychiatry. 2008;64(11):1009–1013.Google Scholar
  110. 110.
    Kaye WH, Bailer UF, Frank GK, Wagner A, Henry SE. Brain imaging of serotonin after recovery from anorexia and bulimia nervosa. Physiol Behav. 2005;86(1–2):15–17.PubMedGoogle Scholar
  111. 111.
    Walsh BT, Devlin MJ. Eating disorders: progress and problems. Science. 1998;280(5368):1387–1390.PubMedGoogle Scholar
  112. 112.
    Kelley AE, Baldo BA, Pratt WE, Will MJ. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86(5):773–795.PubMedGoogle Scholar
  113. 113.
    Frank GK, Bailer UF, Henry SE, et al. Increased dopamine D2/D3 receptor binding after recovery from anorexia ­nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry. 2005;58(11):908–912.PubMedGoogle Scholar
  114. 114.
    Yoshizawa M, Tashiro M, Fukudo S, et al. Increased brain histamine H1 receptor binding in patients with anorexia nervosa. Biol Psychiatry. 2009;65(4):329–335.PubMedGoogle Scholar
  115. 115.
    Frank GK, Kaye WH. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy. Nucl Med Biol. 2005;32(7):755–761.PubMedGoogle Scholar
  116. 116.
    Santel S, Baving L, Krauel K, Munte TF, Rotte M. Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures. Brain Res. 2006;1114:138–148.PubMedGoogle Scholar
  117. 117.
    Uher R, Brammer MJ, Murphy T, et al. Recovery and chronicity in anorexia nervosa: brain activity associated with differential outcomes. Biol Psychiatry. 2003;54(9):934–942.PubMedGoogle Scholar
  118. 118.
    Wagner A, Aizenstein H, Mazurkewicz L, et al. Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa. Neuropsychopharmacology. 2008;33(3):513–523.PubMedGoogle Scholar
  119. 119.
    Ellison Z, Foong J, Howard R, Bullmore E, Williams S, Treasure J. Functional anatomy of calorie fear in anorexia nervosa. Lancet. 1998;352(9135):1192.PubMedGoogle Scholar
  120. 120.
    Wagner A, Aizenstein H, Venkatraman VK, et al. Altered reward processing in women recovered from anorexia ­nervosa. Am J Psychiatry. 2007;164(12):1842–1849.PubMedGoogle Scholar
  121. 121.
    Goethals I, Vervaet M, Audenaert K, Jacobs F, Ham H, Van Heeringen C. Does regional brain perfusion correlate with eating disorder symptoms in anorexia and bulimia nervosa patients? J Psychiatr Res. 2007;41(12):1005–1011.PubMedGoogle Scholar
  122. 122.
    Sachdev P, Mondraty N, Wen W, Gulliford K. Brains of anorexia nervosa patients process self-images differently from non-self-images: an fMRI study. Neuropsychologia. 2008;46(8):2161–2168.PubMedGoogle Scholar
  123. 123.
    Seeger G, Braus DF, Ruf M, Goldberger U, Schmidt MH. Body image distortion reveals amygdala activation in patients with anorexia nervosa – a functional magnetic resonance imaging study. Neurosci Lett. 2002;326(1):25–28.PubMedGoogle Scholar
  124. 124.
    Wagner A, Ruf M, Braus DF, Schmidt MH. Neuronal activity changes and body image distortion in anorexia nervosa. Neuroreport. 2003;14(17):2193–2197.PubMedGoogle Scholar
  125. 125.
    Shirao N, Okamoto Y, Okada G, Okamoto Y, Yamawaki S. Temporomesial activation in young females associated with unpleasant words concerning body image. Neuropsychobiology. 2003;48(3):136–142.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Clinical Development Endocrine, Pfizer Inc.New YorkUSA

Personalised recommendations