The Relationship Between Mood, Stress, and Tobacco Smoking

  • Espen Walderhaug
  • Kelly P. Cosgrove
  • Zubin Bhagwagar
  • Alexander Neumeister


The primary addictive substance in tobacco is nicotine (Le Foll and Goldberg, Handb Exp Pharmacol 192:335–367, 2009), although other chemicals also contribute to the reinforcing properties of tobacco smoke (Rose et al, Pharmacol Biochem Behav 23L:289–293, 1985); (Rose and Behm, Pharmacol Biochem Behav 28:305–310, 1987); (Rose and Levin, Br J Addict 86:605–609, 1991); (Rose et al, Pharmacol Biochem Behav 44:891–900, 1993); (Butschky et al, Pharmacol Biochem Behav 50:91–96, 1995); (Gross et al, Pharmacol Biochem Behav 57:159–165, 1997); (Pickworth et al, Nicotine Tob Res 1:357–364, 1999); (Rose et al, Pharmacol Biochem Behav 62:165–172, 1999); (Shahan et al, Psychopharmacology (Berl) 147:210–216, 1999); (Dallery et al, Psychopharmacology (Berl) 165:172–180, 2003); (Rose et al, Pharmacol Biochem Behav 76:243–250, 2003). Nicotine shares the reinforcing and dopamine-stimulating properties with other psychostimulants (Picciotto, Drug Alcohol Depend 51(1–2):165–172, 1998). Nicotine exerts its effect in all humans; however, the abuse potential of tobacco smoking is probably exacerbated in individuals with depression, during high stress and in people exhibiting negative emotions (Picciotto et al, Neuroreport 13(9):1097–1106, 2002). It is therefore of great interest to understand the neurobiological and behavioral effects of nicotine in healthy people and individuals with mood and anxiety disorders, all of which occur to be associated with high rates of nicotine dependence. Molecular imaging using single-photon emission computed tomography and positron emission tomography is currently the most powerful tool to better understand the relationship between nicotine addiction, mood, stress, and cognition; however, we have to acknowledge that this research is still in its infancy.


Major Depressive Disorder Nicotine Dependence Force Swim Test Cholinergic System Tail Suspension Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Le Foll B, Goldberg SR. Effects of nicotine in experimental animals and humans: an update on addictive properties. Handb Exp Pharmacol. 2009;192:335–367.PubMedGoogle Scholar
  2. 2.
    Rose J, Tashkin D, Ertle A, Zinser M, Lafer R. Sensory blockade of smoking satisfaction. Pharmacol Biochem Behav. 1985;23L:289–293.Google Scholar
  3. 3.
    Rose J, Behm F. Refined cigarette smoke as a method for reducing nicotine intake. Pharmacol Biochem Behav. 1987;28:305–310.PubMedGoogle Scholar
  4. 4.
    Rose J, Levin E. Inter-relationships between conditioned and primary reinforcement in the maintenance of cigarette smoking. Br J Addict. 1991;86:605–609.PubMedGoogle Scholar
  5. 5.
    Rose J, Behm F, Levine E. The role of nicotine dose and sensory cues in the regulation of smoke intake. Pharmacol Biochem Behav. 1993;44:891–900.PubMedGoogle Scholar
  6. 6.
    Butschky M, Bailer D, Henningfield J, Pickworth W. Smoking without nicotine delivery decreases withdrawal in 12-hour abstinent smokers. Pharmacol Biochem Behav. 1995;50:91–96.PubMedGoogle Scholar
  7. 7.
    Gross J, Lee J, Stitzer M. Nicotine-containing versus de-nicotinized cigarettes: effects on craving and withdrawal. Pharmacol Biochem Behav. 1997;57:159–165.PubMedGoogle Scholar
  8. 8.
    Pickworth W, Fant R, Nelson R, Rohrer M, Henningfield J. Pharmacodynamic effects of new denicotinized cigarettes. Nicotine Tob Res. 1999;1:357–364.PubMedGoogle Scholar
  9. 9.
    Rose J, Westman E, Behm F, Johnson M, Goldberg J. Blockade of smoking satisfaction uisng the peripheral nicotinic antagonist trimethaphan. Pharmacol Biochem Behav. 1999;62:165–172.PubMedGoogle Scholar
  10. 10.
    Shahan T, Bickel W, Madden G, Badger G. Comparing the reinforcing efficacy of nicotine containing and de-nicotinized cigarettes: a behavioral economic analysis. Psychopharmacology (Berl). 1999;147:210–216.Google Scholar
  11. 11.
    Dallery J, Houtsmuller E, Pickworth W, Stitzer M. Effects of cigarette nicotine content and smoking pace on subsequent craving and smoking. Psychopharmacology (Berl). 2003;165:172–180.Google Scholar
  12. 12.
    Rose J, Behm F, Westman E, Bates J, Salley A. Pharmacologic and sensorimotor components of satiation in cigarette smoking. Pharmacol Biochem Behav. 2003;76:243–250.PubMedGoogle Scholar
  13. 13.
    Picciotto MR. Common aspects of the action of nicotine and other drugs of abuse. Drug Alcohol Depend. 1998;51(1–2):165–172.PubMedGoogle Scholar
  14. 14.
    Picciotto MR, Brunzell DH, Caldarone BJ. Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport. 2002;13(9):1097–1106.PubMedGoogle Scholar
  15. 15.
    Mineur YS, Somenzi O, Picciotto MR. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology. 2007;52(5):1256–1262.PubMedGoogle Scholar
  16. 16.
    Bertrand D, Changeux J. Nicotinic receptor: an allosteric protein specialized for intracellular communication. Semin Neurosci. 1992;7:75–90.Google Scholar
  17. 17.
    Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S. Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 1994;79:705–715.PubMedGoogle Scholar
  18. 18.
    Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci. 1993;16:403–443.PubMedGoogle Scholar
  19. 19.
    Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Prog Neurobiol. 1997;53:199–237.PubMedGoogle Scholar
  20. 20.
    Coplan JD, Smith ELP, Altemus M, et al. Variable foraging demand rearing: sustained elevations in cisternal cerebrospinal fluid corticotropin-releasing factor concentrations in adult primates. Biol Psychiatry. 2001;50(3):200–204.PubMedGoogle Scholar
  21. 21.
    Preisig M, Bellivier F, Fenton BT, et al. Association between bipolar disorder and monoamine oxidase A gene polymorphisms: results of a multicenter study. Am J Psychiatry. 2000;157:948–955.PubMedGoogle Scholar
  22. 22.
    Le Novere N, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol. 2002;53(4):447–456.PubMedGoogle Scholar
  23. 23.
    Le Novère N, Changeux J-P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol. 1995;40:155–172.PubMedGoogle Scholar
  24. 24.
    Zoli M, Léna C, Picciotto MR, Changeux J-P. Identification of four classes of brain nicotinic receptors using b2-mutant mice. J Neurosci. 1998;18:4461–4472.PubMedGoogle Scholar
  25. 25.
    Buss AH, Perry M. The aggression questionnaire. J Pers Soc Psychol. 1992;63(3):452–459.PubMedGoogle Scholar
  26. 26.
    Court J, Clementi F. Distribution of nicotinic subtypes in human brain. Alzheimer Dis Assoc Disord. 1995;9(suppl 2):6–14.PubMedGoogle Scholar
  27. 27.
    Perry A, Tarrier N, Morriss R, McCarthy E, Limb K. Randomised controlled trial of efficacy of teaching patients with bipolar disorder to identify early symptoms of relapse and obtain treatment. Br Med J. 1999;318:149–153.Google Scholar
  28. 28.
    Benwell M, Balfour D, Anderson J. Evidence that tobacco smoking increases the density of (–)-[3H]nicotine binding site in human brain. J Neurochem. 1988;50:1243–1247.PubMedGoogle Scholar
  29. 29.
    Breese C, Marks M, Logel J, et al. Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther. 1997;282:7–13.PubMedGoogle Scholar
  30. 30.
    Court J, Lloyd S, Thomas N, et al. Dopamine and nicotinic receptor binding and the levels of dopamine and homovanillic acid in human brain related to tobacco use. Neuroscience. 1998;87:63–78.PubMedGoogle Scholar
  31. 31.
    Perry D, Dávila-García M, Stockmeier C, Kellar K. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther. 1999;289:1545–1552.PubMedGoogle Scholar
  32. 32.
    Bhat R, Turner S, Selvaag S, Marks M, Collins A. Regulation of brain nicotinic receptors by chronic agonist infusion. J Neurochem. 1991;56:1932–1939.PubMedGoogle Scholar
  33. 33.
    Collins A, Marks M. Chronic nicotine exposure and brain nicotinic receptors – influence of genetic factors. Prog Brain Res. 1989;79:137–146.PubMedGoogle Scholar
  34. 34.
    Marks M, Stitzel J, Collins A. Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J Pharmacol Exp Ther. 1985;235:619–628.PubMedGoogle Scholar
  35. 35.
    Marks M, Romm E, Gaffney D, Collins A. Nicotine-induced tolerance and receptor changes in four mouse strains. J Pharmacol Exp Ther. 1986;237:809–819.PubMedGoogle Scholar
  36. 36.
    Marks M, Pauly J, Gross S, et al. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci. 1992;12:2765–2784.PubMedGoogle Scholar
  37. 37.
    Wonnacott S. The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol Sci. 1990;11:216–219.PubMedGoogle Scholar
  38. 38.
    Flores C, Rogers S, Pabreza L, Wolfe B, Kellar K. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol. 1992;41:31–37.PubMedGoogle Scholar
  39. 39.
    Ksir C, Hakan R, Kellar K. Chronic nicotine and locomoter activity: influences of exposure dose and test dose. Psychopharmacology (Berl). 1987;92:25–29.Google Scholar
  40. 40.
    Nordberg A, Romanelli L, Sundwall A, Bianchi C, Beani L. Effect of acute and subchronic nicotine treatment on cortical acetylchoine release and on nicotinic receptors in rats and guinea-pigs. Br J Pharmacol. 1989;98:71–78.PubMedGoogle Scholar
  41. 41.
    Schwartz R, Kellar K. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science. 1983;220:214–216.PubMedGoogle Scholar
  42. 42.
    Schwartz R, Kellar K. In vivo regulation of [3H]acetylcholine recognition sites in brain by nicotinic cholinergic drugs. J Neurochem. 1985;45:427–433.PubMedGoogle Scholar
  43. 43.
    Kassiou M, Eberl S, Meikle S, et al. In vivo imaging of nicotinic receptor upregulation following chronic (–)-nicotine treatment in baboon using SPECT. Nucl Med Biol. 2001;28:165–175.PubMedGoogle Scholar
  44. 44.
    Baldwin R, Zoghbi S, Staley J, et al. Chemical fate of the nicotinic acetylcholinergic radiotracer [123I]5-IA-85380 in baboon brain and plasma. Nucl Med Biol. 2006;33:549–554.PubMedGoogle Scholar
  45. 45.
    Sedvall G, Farde L, Nyback H, et al. Recent advances in psychiatric brain imaging. Acta Radiol Suppl. 1990;374:113–115.PubMedGoogle Scholar
  46. 46.
    Horti AG, Koren AO, Lee KS, et al. Radiosynthesis and preliminary evaluation of 5-[123/125I]iodo-3-(2(S)-azetidinylmethoxy)pyridine: a radioligand for nicotinic acetylcholine receptors. Nucl Med Biol. 1999;26(2):175–182.PubMedGoogle Scholar
  47. 47.
    Fan H, Scheffel UA, Rauseo P, et al. [125/123I] 5-Iodo-3-pyridyl ethers: syntheses and binding to neuronal nicotinic acetylcholine receptors. Nucl Med Biol. 2001;28(8):911–921.PubMedGoogle Scholar
  48. 48.
    Chefer SI, Horti AG, Lee KS, et al. In vivo imaging of brain nicotinic acetylcholine receptors with 5-[123I]iodo-A-85380 using single photon emission computed tomography. Life Sci. 1998;63(25):PL355-PL360.PubMedGoogle Scholar
  49. 49.
    Fujita M, Charney DS, Innis RB. Imaging serotonergic neurotransmission in depression: hippocampal pathophysiology may mirror global brain alterations. Biol Psychiatry. 2000;48(8):801–812.PubMedGoogle Scholar
  50. 50.
    Horti AG, Chefer SI, Mukhin AG, et al. 6-[18F]fluoro-A-85380, a novel radioligand for in vivo imaging of central nicotinic acetylcholine receptors. Life Sci. 2000;67(4):463–469.PubMedGoogle Scholar
  51. 51.
    Staley J, Krishnan-Sarin S, Cosgrove K, et al. Human tobacco smokers in early abstinence have higher levels of beta2-nicotinic acetylcholine receptors than nonsmokers. J Neurosci. 2006;26(34):8707–8714.PubMedGoogle Scholar
  52. 52.
    Brody A, Mandelkern M, London E, et al. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry. 2006;63:907–915.PubMedGoogle Scholar
  53. 53.
    Cosgrove KP, Batis J, Bois F, et al. Beta2-nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking. Arch Gen Psychiatry. 2009;66(6):666–676.PubMedGoogle Scholar
  54. 54.
    Kahlil A, Steyn S, Castagnoli N. Isolation and characterization of monoamine oxidase inhibitor from tobacco leaves. Chem Res Toxicol. 2000;13:31–35.Google Scholar
  55. 55.
    Fowler JS, Volkow ND, Wang GJ, et al. Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci U S A. 1996;93(24):14065–14069.PubMedGoogle Scholar
  56. 56.
    Fowler JS, Volkow ND, Wang GJ, et al. Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. J Addict Dis. 1998;17(1):23–34.PubMedGoogle Scholar
  57. 57.
    Fowler JS, Volkow ND, Wang GJ, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature. 1996;379(6567):733–736.PubMedGoogle Scholar
  58. 58.
    Berlin I, Said S, Spreux-Varoquaux O, Olivares R, Launay J-M, Peuch A. Monoamine oxidase A and B activities in heavy smokers. Biol Psychol. 1995;38:756–761.Google Scholar
  59. 59.
    Norman T, Chamberlain K, French M. Platelet monoamine oxidase: low activity in cigarette smokers. Psychiatry Res. 1987;20:199–205.PubMedGoogle Scholar
  60. 60.
    Norman T, Chamberlain K, French M. Platelet monoamine oxidase and cigarette smoking. J Affect Disord. 1987;4:73–77.Google Scholar
  61. 61.
    Leroy C, Bragulat V, Berlin I, et al. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]befloxatone. J Clin Psychopharmacol. 2009;29(1):86–88.PubMedGoogle Scholar
  62. 62.
    Ginovart N, Meyer JH, Boovariwala A, et al. Positron emission tomography quantification of [11C]-harmine binding to monoamine oxidase-A in the human brain. J Cereb Blood Flow Metab. 2006;26(3):330–344.PubMedGoogle Scholar
  63. 63.
    Meyer JH, Ginovart N, Boovariwala A, et al. Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry. 2006;63(11):1209–1216.PubMedGoogle Scholar
  64. 64.
    Leonard S, Adler LE, Benhammou K, et al. Smoking and mental illness. Pharmacol Biochem Behav. 2001;70(4):561–570.PubMedGoogle Scholar
  65. 65.
    Thaker G. Psychosis endophenotypes in schizophrenia and bipolar disorder. Schizophr Bull. 2008;34(4):720–721.PubMedGoogle Scholar
  66. 66.
    Zimmerman M, Chelminski I, McDermut W. Major depressive disorder and axis I diagnostic comorbidity. J Clin Psychiatry. 2002;63(3):187–193.PubMedGoogle Scholar
  67. 67.
    Rose J, Behm F, Ramsey C, Ritchie J. Platelet monoamine oxidase, smoking cessation and tobacco withdrawal symptoms. Nicotine Tob Res. 2001;3:383–390.PubMedGoogle Scholar
  68. 68.
    VanDenEijnden R, Spijkerman R, Fekkes D. Craving for cigarettes among low and high dependent smokers: impact of norharman. Addict Biol. 2003;8:463–472.Google Scholar
  69. 69.
    Wesnes K, Simpson P, Christmas L, Anand R, McClelland G. The effects of moclobemide on cognition. J Neural Transm. 1989;28:91–102.Google Scholar
  70. 70.
    Allain H, Lieury A, Brunet-Bourgin F, et al. Antidepressants and cognition: comparative effects of moclobemide, viloxazine and maprotiline. Psychopharmacology (Berl). 1991;106(suppl):S56–S61.Google Scholar
  71. 71.
    Fairweather D, Kerr J, Hindmarch I. The effects of moclobemide on psychomotor performance and cognitive function. Int Clin Psychopharmacol. 1993;8:43–47.PubMedGoogle Scholar
  72. 72.
    Dignemanse J, Berlin I, Payan C, Tede H, Puech A. Comparative investigation of the effect of moclobemide and toloxatone on monoamine oxidase activity and psychometric performance in healthy subjects. Psychopharmacology (Berl). 1992;106:S68–S70.Google Scholar
  73. 73.
    Frank M, Braszko J. Moclobemide enhances aversively motivated learning and memory in rats. Pol J Pharmacol. 1999;1999:497–503.Google Scholar
  74. 74.
    Getova D, Dimitrova D, Roukounakis I. Effects of the ­antidepressant drug moclobemide on learning and memory in rats. Methods Find Exp Clin Pharmacol. 2003;25:811–815.PubMedGoogle Scholar
  75. 75.
    Knoll J. The pharmacology of selegiline ((–)deprenyl). New aspects. Acta Neurol Scand. 1988;80(suppl 126):83–91.Google Scholar
  76. 76.
    Brandeis R, Sapir M, Kapon Y, Borelli G, Cadel S, Valsecchi B. Improvement of cognitive function by MAO-B inhibitor l-deprenyl in aged rats. Pharmacol Biochem Behav. 1991;39:297–304.PubMedGoogle Scholar
  77. 77.
    Gelowitz D, Richardson J, Wishart T, Yu P, Lai C-T. Chronic l-deprenyl or l-amphetamine: equal cognitive enhancement, unequal MAO inhibition. Pharmacol Biochem Behav. 1994;47:41–45.PubMedGoogle Scholar
  78. 78.
    Riggs PD, Mikulich SK, Whitmore EA, Crowley TJ. Relationship of ADHD, depression, and non-tobacco ­substance use disorders to nicotine dependence in substance-dependent delinquents. Drug Alcohol Depend. 1999;54(3):195–205.PubMedGoogle Scholar
  79. 79.
    Breslau N, Kilbey MM, Andreski P. Nicotine dependence and major depression: new evidence from a prospective investigation. Arch Gen Psychiatry. 1993;50(1):31–35.PubMedGoogle Scholar
  80. 80.
    Brown RA, Lewinsohn PM, Seeley JR, Wagner EF. Cigarette smoking, major depression, and other psychiatric disorders among adolescents. J Am Acad Child Adolesc Psychiatry. 1996;35(12):1602–1610.PubMedGoogle Scholar
  81. 81.
    Scarinci IC, Thomas J, Brantley PJ, Jones GN. Examination of the temporal relationship between smoking and major depressive disorder among low-income women in public primary care clinics. Am J Health Promot. 2002;16(6):323–330.PubMedGoogle Scholar
  82. 82.
    Levine MD, Marcus MD, Perkins KA. A history of depression and smoking cessation outcomes among women concerned about post-cessation weight gain. Nicotine Tob Res. 2003;5(1):69–76.PubMedGoogle Scholar
  83. 83.
    Anda RF, Williamson DF, Escobedo LG, Mast EE, Giovino GA, Remington PL. Depression and the dynamics of smoking. A national perspective. JAMA. 1990;264(12):1541–1545.PubMedGoogle Scholar
  84. 84.
    Glassman AH, Helzer JE, Covey LS, et al. Smoking, smoking cessation, and major depression. JAMA. 1990;264(12):1546–1549.PubMedGoogle Scholar
  85. 85.
    Glassman AH, Stetner F, Walsh BT, et al. Heavy smokers, smoking cessation, and clonidine. Results of a double-blind, randomized trial. JAMA. 1988;259(19):2863–2866.PubMedGoogle Scholar
  86. 86.
    Glassman AH, Covey LS, Dalack GW, et al. Smoking cessation, clonidine, and vulnerability to nicotine among dependent smokers. Clin Pharmacol Ther. 1993;54(6):670–679.PubMedGoogle Scholar
  87. 87.
    Killen JD, Fortmann SP, Schatzberg A, Hayward C, Varady A. Onset of major depression during treatment for nicotine dependence. Addict Behav. 2003;28(3):461–470.PubMedGoogle Scholar
  88. 88.
    Grant BF, Hasin DS, Chou SP, Stinson FS, Dawson DA. Nicotine dependence and psychiatric disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2004;61(11):1107–1115.PubMedGoogle Scholar
  89. 89.
    Quattrocki E, Baird A, Yurgelun-Todd D. Biological aspects of the link between smoking and depression. Harv Rev Psychiatry. 2000;8(3):99–110.PubMedGoogle Scholar
  90. 90.
    Paz R, Barsness B, Martenson T, Tanner D, Allan AM. Behavioral teratogenicity induced by nonforced maternal nicotine consumption. Neuropsychopharmacology. 2007;32(3):693–699.PubMedGoogle Scholar
  91. 91.
    Leventhal AM, Francione Witt C, Zimmerman M. Associations between depression subtypes and substance use disorders. Psychiatry Res. 2008;161(1):43–50.PubMedGoogle Scholar
  92. 92.
    Gentry MV, Hammersley JJ, Hale CR, Nuwer PK, Meliska CJ. Nicotine patches improve mood and response speed in a lexical decision task. Addict Behav. 2000;25(4):549–557.PubMedGoogle Scholar
  93. 93.
    Masson CL, Gilbert DG. Cardiovascular and mood responses to quantified doses of cigarette smoke in oral contraceptive users and nonusers. J Behav Med. 1999;22(6):589–604.PubMedGoogle Scholar
  94. 94.
    Parrott AC. Nesbitt’s paradox resolved? Stress and arousal modulation during cigarette smoking. Addiction. 1998;93(1):27–39.PubMedGoogle Scholar
  95. 95.
    Pomerleau CS, Pomerleau OF. Euphoriant effects of nicotine in smokers. Psychopharmacology (Berl). 1992;108(4):460–465.Google Scholar
  96. 96.
    Perkins KA, Doyle T, Ciccocioppo M, Conklin C, Sayette M, Caggiula A. Sex differences in the influence of nicotine dose instructions on the reinforcing and self-reported rewarding effects of smoking. Psychopharmacology (Berl). 2006;184(3–4):600–607.Google Scholar
  97. 97.
    Spring B, Cook JW, Appelhans B, et al. Nicotine effects on affective response in depression-prone smokers. Psychophar­macology (Berl). 2008;196(3):461–471.Google Scholar
  98. 98.
    Kalman D, Morissette SB, George TP. Co-morbidity of smoking in patients with psychiatric and substance use ­disorders. Am J Addict. 2005;14(2):106–123.PubMedGoogle Scholar
  99. 99.
    Pomerleau CS, Mehringer AM, Marks JL, Downey KK, Pomerleau OF. Effects of menstrual phase and smoking abstinence in smokers with and without a history of major depressive disorder. Addict Behav. 2000;25(4):483–497.PubMedGoogle Scholar
  100. 100.
    Williams JM, Ziedonis D. Addressing tobacco among individuals with a mental illness or an addiction. Addict Behav. 2004;29(6):1067–1083.PubMedGoogle Scholar
  101. 101.
    Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: a population-based prevalence study. JAMA. 2000;284(20):2606–2610.PubMedGoogle Scholar
  102. 102.
    Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA. Prevalence of smoking among psychiatric outpatients. Am J Psychiatry. 1986;143(8):993–997.PubMedGoogle Scholar
  103. 103.
    Hennessy S, Bilker WB, Knauss JS, et al. Cardiac arrest and ventricular arrhythmia in patients taking antipsychotic drugs: cohort study using administrative data. BMJ. 2002;325(7372):1070.PubMedGoogle Scholar
  104. 104.
    Morris CD, Giese AA, Turnbull JJ, Dickinson M, Johnson-Nagel N. Predictors of tobacco use among persons with mental illnesses in a statewide population. Psychiatr Serv. 2006;57(7):1035–1038.PubMedGoogle Scholar
  105. 105.
    Labbate LA. Nicotine cessation, mania, and depression. Am J Psychiatry. 1992;149(5):708.PubMedGoogle Scholar
  106. 106.
    Benazzi F. Severe mania following abrupt nicotine withdrawal. Am J Psychiatry. 1989;146(12):1641.PubMedGoogle Scholar
  107. 107.
    Cohen SB. Mania after nicotine withdrawal. Am J Psychiatry. 1990;147(9):1254–1255.PubMedGoogle Scholar
  108. 108.
    Berk M, Ng F, Wang WV, et al. Going up in smoke: tobacco smoking is associated with worse treatment outcomes in mania. J Affect Disord. 2008;110(1–2):126–134.PubMedGoogle Scholar
  109. 109.
    Clarke PBS, Pert A. Autoradiographic evidence for nicotine receptors in nigrostriatal and mesolimbic dopaminergic neurons. Brain Res. 1985;348:355–358.PubMedGoogle Scholar
  110. 110.
    Giorguieff-Chesselet MF, Kemel ML, Wandscheer D, Glowinski J. Regulation of dopamine release by presynaptic nicotinic receptors in rat striatal slices: effect of nicotine in a low concentration. Life Sci. 1979;25:1257–1262.PubMedGoogle Scholar
  111. 111.
    Yoshida K, Kato Y, Imura H. Nicotine induced release of noradrenaline from hypothalamic synaptosomes. Brain Res. 1980;182:361–368.PubMedGoogle Scholar
  112. 112.
    Wonnacott S, Drasdo A, Sanderson E, Rowell P. Presynaptic nicotinic receptors and the modulation of transmission release. In: Block G, Marsh J, eds. The Biology of Nicotine Dependence. Chichester, UK: Wiley; 1990:87–105.Google Scholar
  113. 113.
    Muller-Oerlinghausen B, Muser-Causemann B, Volk J. Suicides and parasuicides in a high-risk patient group on and off lithium long-term medication. J Affect Disord. 1992;25:261–270.PubMedGoogle Scholar
  114. 114.
    Mihailescu S, Palomerorivero M, Meadehuerta P, Mazaflores A, Druckercolin R. Effects of nicotine and mecamylamine on rat dorsal raphe neurons. Eur J Pharmacol. 1998;360(1):31–36.PubMedGoogle Scholar
  115. 115.
    File SE, Kenny PJ, Cheeta S. The role of the dorsal hippocampal serotonergic and cholinergic systems in the modulation of anxiety. Pharmacol Biochem Behav. 2000;66(1):65–72.PubMedGoogle Scholar
  116. 116.
    Toth E, Sershen H, Hashim A, Vizi ES, Lajtha A. Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: role of glutamic acid. Neurochem Res. 1992;17(3):265–271.PubMedGoogle Scholar
  117. 117.
    Mansvelder HD, Keath JR, McGehee DS. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron. 2002;33:905–919.PubMedGoogle Scholar
  118. 118.
    Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ. A cholinergic-adrenergic hypothesis of mania and depression. Lancet. 1972;2(7778):632–635.PubMedGoogle Scholar
  119. 119.
    Dilsaver SC. Pathophysiology of “cholinoceptor supersensitivity” in affective disorders. Biol Psychiatry. 1986;21(8–9):813–829.PubMedGoogle Scholar
  120. 120.
    Risch SC, Cohen RM, Janowsky DS, Kalin NH, Murphy DL. Mood and behavioral effects of physostigmine on humans are accompanied by elevations in plasma beta-endorphin and cortisol. Science. 1980;209(4464):1545–1546.PubMedGoogle Scholar
  121. 121.
    Janowsky DS, Overstreet DH. Cholinergic dysfunction in depression. Pharmacol Toxicol. 1990;3:100–111.Google Scholar
  122. 122.
    Overstreet DH. The flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev. 1993;17(1):51–68.PubMedGoogle Scholar
  123. 123.
    Dilsaver SC, Greden JF, Snider RM. Antidepressant withdrawal syndromes: phenomenology and physiopathology. Int Clin Psychopharmacol. 1987;2:1–19.PubMedGoogle Scholar
  124. 124.
    Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug Scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry. 2006;63(10):1121–1129.PubMedGoogle Scholar
  125. 125.
    Wang JC, Hinrichs AL, Stock H, et al. Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum Mol Genet. 2004;13(17):1903–1911.PubMedGoogle Scholar
  126. 126.
    Comings D, Wu S, Rostamkhani M, McGue M, Iacono WG, MacMurray JP. Association of the muscarinic cholinergic 2 receptor (CHRM2) gene with major depression in women. Am J Med Genet. 2002;114(5):527–529.PubMedGoogle Scholar
  127. 127.
    Lai IC, Hong C-J, Tsai S-J. Association study of nicotinic-receptor variants and major depressive disorder. J Affect Disord. 2001;66(1):79–82.PubMedGoogle Scholar
  128. 128.
    Browne RG. Effects of antidepressants and anticholinergics in a mouse “behavioral despair” test. Eur J Pharmacol. 1979;58(3):331–334.PubMedGoogle Scholar
  129. 129.
    Overstreet DH, Russell RW, Hay DA, Crocker AD. Selective breeding for increased cholinergic function – biometrical genetic-analysis of muscarinic responses. Neuropsychopharmacology. 1992;7(3):197–204.PubMedGoogle Scholar
  130. 130.
    Rabenstein RL, Caldarone BJ, Picciotto MR. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not β2- or α7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology (Berl). 2006;189(3):395–401.Google Scholar
  131. 131.
    Booij L, Swenne CA, Brosschot JF, Haffmans PMJ, Thayer JF, Van der Does AJW. Tryptophan depletion affects heart rate variability and impulsivity in remitted depressed patients with a history of suicidal ideation. Biol Psychiatry. 2006;60(5):507–514.PubMedGoogle Scholar
  132. 132.
    Risch SC, Kalin NH, Janowsky DS. Cholinergic challenges in affective-illness – behavioral and neuroendocrine correlates. J Clin Psychopharmacol. 1981;1(4):186–192.PubMedGoogle Scholar
  133. 133.
    Janowsky DS, El-Yousef MK, Davis JM. Acetylcholine and depression. Psychosom Med. 1974;36(3):248–257.PubMedGoogle Scholar
  134. 134.
    Rubin RT, O’Toole SM, Rhodes ME, Sekula LK, Czambel RK. Hypothalamo-pituitary-adrenal cortical responses to low-dose physostigmine and arginine vasopressin administration: sex differences between major depressives and matched control subjects. Psychiatry Res. 1999;89(1):1–20.PubMedGoogle Scholar
  135. 135.
    Berger M, Riemann D, Hochli D, Spiegel R. The cholinergic rapid eye movement sleep induction test with RS-86. State or trait marker of depression? Arch Gen Psychiatry. 1989;46(5):421–428.PubMedGoogle Scholar
  136. 136.
    Raisman R, Briley M, Langer SZ. Specific tricyclic antidepressant binding sites in rat brain. Nature. 1979;281(5727):148–150.PubMedGoogle Scholar
  137. 137.
    Stanton T, Bolden-Watson C, Cusack B, Richelson E. Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol. 1993;45(11):2352–2354.PubMedGoogle Scholar
  138. 138.
    Schatzberg AF. Employing pharmacologic treatment of bipolar disorder to greatest effect. J Clin Psychiatry. 2004;65:15–20.PubMedGoogle Scholar
  139. 139.
    Dalley JW, Fryer TD, Brichard L, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315(5816):1267–1270.PubMedGoogle Scholar
  140. 140.
    Segurado R, Detera-Wadleigh SD, Levinson DF, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet. 2003;73(1):49–62.PubMedGoogle Scholar
  141. 141.
    Lopez-Valdes HE, Garcia-Colunga J. Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake. Mol Psychiatry. 2001;6(5):511–519.PubMedGoogle Scholar
  142. 142.
    Garcia-Colunga J, Awad JN, Miledi R. Blockage of muscle and neuronal nicotinic acetylcholine receptors by fluoxetine (Prozac). Proc Natl Acad Sci U S A. 1997;94(5):2041–2044.PubMedGoogle Scholar
  143. 143.
    Miller DK, Sumithran SP, Dwoskin LP. Bupropion inhibits nicotine-evoked [(3)H]overflow from rat striatal slices ­preloaded with [(3)H]dopamine and from rat hippocampal slices preloaded with [(3)H]norepinephrine. J Pharmacol Exp Ther. 2002;302(3):1113–1122.PubMedGoogle Scholar
  144. 144.
    Hennings EC, Kiss JP, De Oliveira K, Toth PT, Vizi ES. Nicotinic acetylcholine receptor antagonistic activity of monoamine uptake blockers in rat hippocampal slices. J Neurochem. 1999;73(3):1043–1050.PubMedGoogle Scholar
  145. 145.
    Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther. 2000;295:321–327.PubMedGoogle Scholar
  146. 146.
    Olausson P, Engel JA, Soderpalm B. Behavioral sensitization to nicotine is associated with behavioral disinhibition; counteraction by citalopram. Psychopharmacologia. 1999;142(2):111–119.Google Scholar
  147. 147.
    Popik P, Kozela E, Krawczyk M. Nicotine and nicotinic receptor antagonists potentiate the antidepressant-like effects of imipramine and citalopram. Br J Pharmacol. 2003;139(6):1196–1202.PubMedGoogle Scholar
  148. 148.
    Lesch KP, Rupprecht R, Poten B, et al. Endocrine responses to 5-hydroxytryptamine-1A receptor activation by ipsapirone in humans. Biol Psychiatry. 1989;26(2):203–205.PubMedGoogle Scholar
  149. 149.
    Sokolski KN, DeMet EM. Cholinergic sensitivity predicts severity of mania. Psychiatry Res. 2000;95(3):195–200.PubMedGoogle Scholar
  150. 150.
    Hrdina PD, Demeter E, Vu TB, Sotonyi P, Palkovits M. 5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: increase in 5-HT2 sites in cortex and amygdala. Brain Res. 1993;614(1–2):37–44.PubMedGoogle Scholar
  151. 151.
    Sokolski KN, DeMet EM. Pupillary cholinergic sensitivity to pilocarpine increases in manic lithium responders. Biol Psychiatry. 1999;45(12):1580–1584.PubMedGoogle Scholar
  152. 152.
    Semba J, Mataki C, Yamada S, Nankai M, Toru M. Antidepressant-like effects of chronic nicotine on learned helplessness paradigm in rats. Biol Psychiatry. 1998;43(5):389–391.PubMedGoogle Scholar
  153. 153.
    Djuric VJ, Dunn E, Overstreet DH, Dragomir A, Steiner M. Antidepressant effect of ingested nicotine in female rats of Flinders resistant and sensitive lines. Physiol Behav. 1999;67(4):533–537.PubMedGoogle Scholar
  154. 154.
    Tizabi Y, Overstreet DH, Rezvani AH, et al. Antidepressant effects of nicotine in an animal model of depression. Psychopharmacology (Berl). 1999;142(2):193–199.Google Scholar
  155. 155.
    Ferguson SM, Brodkin JD, Lloyd GK, Menzaghi F. Antidepressant-like effects of the subtype-selective nicotinic acetylcholine receptor agonist, SIB-1508Y, in the learned helplessness rat model of depression. Psychopharmacology (Berl). 2000;152(3):295–303.Google Scholar
  156. 156.
    Gatto GJ, Bohme GA, Caldwell WS, et al. TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects. CNS Drug Rev. 2004;10(2):147–166.PubMedGoogle Scholar
  157. 157.
    Shytle RD, Silver AA, Sheehan KH, Sheehan DV, Sanberg PR. Neuronal nicotinic receptor inhibition for treating mood disorders: preliminary controlled evidence with mecamylamine. Depress Anxiety. 2002;16(3):89–92.PubMedGoogle Scholar
  158. 158.
    George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J Clin Psychopharmacol. 2008;28(3):340–344.PubMedGoogle Scholar
  159. 159.
    Mihailescu S, Drucker-Colin R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res. 2000;31(2):131–144.PubMedGoogle Scholar
  160. 160.
    Dursun SM, Kutcher S. Smoking, nicotine and psychiatric disorders: evidence for therapeutic role, controversies and implications for future research. Med Hypotheses. 1999;52(2):101–109.PubMedGoogle Scholar
  161. 161.
    Reitstetter R, Lukas RJ, Gruener R. Dependence of nicotinic acetylcholine receptor recovery from desensitization on the duration of agonist exposure. J Pharmacol Exp Ther. 1999;289(2):656–660.PubMedGoogle Scholar
  162. 162.
    Gentry CL, Lukas RJ. Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord. 2002;1(4):359–385.PubMedGoogle Scholar
  163. 163.
    Breslau N, Davis GC, Schultz LR. Posttraumatic stress disorder and the incidence of nicotine, alcohol, and other drug disorders in persons who have experienced trauma. Arch Gen Psychiatry. 2003;60(3):289–294.PubMedGoogle Scholar
  164. 164.
    Bovet D, Bovet-Nitti F, Oliverio A. Effects of nicotine on avoidance conditioning of inbred strains of mice. Psychopharmacologia. 1966;10:1–5.PubMedGoogle Scholar
  165. 165.
    Levin E, Rose J. Nicotinic and muscarinic interactions and choice accuracy in the radial arm maze. Brain Res Bull. 1991;27:125–128.PubMedGoogle Scholar
  166. 166.
    Levin E. Nicotinic systems and cognitive function. Psychopharmacology (Berl). 1992;108:417–431.Google Scholar
  167. 167.
    Levin E, Briggs S, Christopher N, Rose J. Chronic nicotinic stimulation and blockade effects on working memory. Behav Pharmacol. 1993;4:179–182.PubMedGoogle Scholar
  168. 168.
    Brioni J, Arneric S. Nicotinic receptor agonists facilitate retention of avoidance training: participation in dopaminergic mechanisms. Behav Neural Biol. 1993;59:57–62.PubMedGoogle Scholar
  169. 169.
    Levin E, Briggs S, Christopher NC, Auman JT. Working memory performance and cholinergic effects in the ventral tegmental area and substantia nigra. Brain Res. 1994;657:165–170.PubMedGoogle Scholar
  170. 170.
    Rusted J, Graupner L, O’Connell N, Nicholls C. Does nicotine improve cognitive performance? Psychopharmacology (Berl). 1994;115:547–549.Google Scholar
  171. 171.
    Sansone M, Battaglia M, Castellano C. Effect of caffeine and nicotine on avoidance learning in mice: lack of interaction. J Pharm Pharmacol. 1994;46:765–767.PubMedGoogle Scholar
  172. 172.
    Levin E, Kim P, Meray R. Chronic nicotine effects on working and reference memory in the 16-arm radial maze: interactions with D1 agonist and antagonist drugs. Psychopharmacology (Berl). 1996;127:25–30.Google Scholar
  173. 173.
    Levin E, Christopher N, Briggs S, Auman J. Chronic nicotinic and dopaminergic effects on spatial working memory performance in rats. Drug Dev Res. 1996;39:29–35.Google Scholar
  174. 174.
    Levin E, Torry D. Acute and chronic nicotine effects on working memory in aged rats. Psychopharmacology (Berl). 1996;123:88–97.Google Scholar
  175. 175.
    Zarrindast M, Sadegh M, Shafaghi B. Effects of nicotine on memory retrieval in mice. Eur J Pharmacol. 1996;295:1–6.PubMedGoogle Scholar
  176. 176.
    Newhouse P, Potter A, Levin E. Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases: implications for therapeutics. Drugs Aging. 1997;11:206–228.PubMedGoogle Scholar
  177. 177.
    Levin E, Simon B. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl). 1998;138:217–230.Google Scholar
  178. 178.
    Gould T, Wehner J. Nicotine enhancement of contextual fear conditioning. Behav Brain Res. 1999;102:31–39.PubMedGoogle Scholar
  179. 179.
    Picciotto M, Calderone B, King S, Zachariou V. Nicotinic receptors in the brain: links between molecular biology and behavior. Neuropsychopharmacology. 2000;22:451–465.PubMedGoogle Scholar
  180. 180.
    Stolerman I, Mirza N, Hahn B, Shoaib M. Nicotine in an animal model of attention. Eur J Pharmacol. 2000;393:147–154.PubMedGoogle Scholar
  181. 181.
    Sanacora G, Gueorguieva R, Epperson C, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry. 2004;61:705–713.PubMedGoogle Scholar
  182. 182.
    Lydiard R. The role of GABA in anxiety disorders. J Clin Psychol. 2003;64:21–27.Google Scholar
  183. 183.
    Sacco K, Bannon K, George T. Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: involvement of nicotinic receptor mechanisms. Arch Gen Psychiatry. 2005;62:649–659.PubMedGoogle Scholar
  184. 184.
    Takita M. Alteration of brain nicotinic receptors induced by immobilization stress and nicotine in rats. Brain Res. 1995;681:190–192.PubMedGoogle Scholar
  185. 185.
    Kohda K, Harada K, Kato K, et al. Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience. 2007;148:22–33.PubMedGoogle Scholar
  186. 186.
    Chen H, Fu Y, Sharp BM. Chronic nicotine self-administration augments hypothalamic-pituitary-adrenal responses to mild acute stress. Neuropsychopharmacology. 2008;33(4):721–730.PubMedGoogle Scholar
  187. 187.
    Assaf M, Calhoun V, Kuzu C, et al. Neural correlates of the object-recall process in semantic memory. Psychiatry Res. 2006;147:115–126.PubMedGoogle Scholar
  188. 188.
    Cools R, Ivry RB, D’Esposito M. The human striatum is necessary for responding to changes in stimulus relevance. J Cogn Neurosci. 2006;18(12):1973–1983.PubMedGoogle Scholar
  189. 189.
    Garrard P, Bradshaw D, Jäger HR, Thompson AJ, Losseff N, Playford D. Cognitive dysfunction after isolated brain stem insult. An underdiagnosed cause of long term morbidity. J Neurol Neurosurg Psychiatry. 2002;73:191–194.PubMedGoogle Scholar
  190. 190.
    Allman JM, Hakeem A, Erwin JM, Nimchinsk E, Hof P. The anterior cingulate cortex: the evolution of an interface between emotion and cognition. Ann N Y Acad Sci. 2001;935:107–117.PubMedGoogle Scholar
  191. 191.
    Czermak C, Staley JK, Kasserman S, et al. Beta2 nicotinic acetylcholine receptor availability in post-traumatic stress disorder. Int J Neuropsychopharmacol. 2008;11(3):419–424.PubMedGoogle Scholar
  192. 192.
    Shin L, Rauch S, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci. 2006;1071:67–79.PubMedGoogle Scholar
  193. 193.
    Ehlers A, Hackmann A, Michael T. Intrusive re-experiencing in post-traumatic stress disorder: phenomenology, theory, and therapy. Memory. 2004;12:403–415.PubMedGoogle Scholar
  194. 194.
    Levin E, McClernon F, Rezvani A. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psycho­pharmacology (Berl). 2006;184:523–539.Google Scholar
  195. 195.
    Lanius R, Williamson P, Densmore M, et al. The nature of traumatic memories: a 4-T FMRI functional connectivity analysis. Am J Psychiatry. 2004;161:36–44.PubMedGoogle Scholar
  196. 196.
    Page F, Coleman G, Conduit R. The effect of transdermal nicotine patches on sleep and dreams. Physiol Behav. 2006;88:425–432.PubMedGoogle Scholar
  197. 197.
    Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74:363–396.PubMedGoogle Scholar
  198. 198.
    Mamede M, Ishizu K, Ueda M, et al. Temporal change in human nicotinic acetylcholine receptor after smoking cessation: 5IA SPECT study. J Nucl Med. 2007;48(11):1829–1835.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Espen Walderhaug
  • Kelly P. Cosgrove
  • Zubin Bhagwagar
  • Alexander Neumeister
    • 1
    • 2
  1. 1.Molecular Imaging Program of the National Center for PTSD, Clinical Neuroscience DivisionVA Connecticut Healthcare SystemWest HavenUSA
  2. 2.Mount Sinai School of MedicineNew YorkUSA

Personalised recommendations