Comparative Physiology

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble


Comparative physiology is based on the allometric equation [1]:
$$ PA=P{A}_{0} \cdot {M}^{e}$$
with PA the parameter of interest, PA 0 a reference value, M body mass, and e the ­exponent. When the logarithm of both sides is taken the equation can be rewritten as:
$$ \mathrm{log}PA=\mathrm{log}P{A}_{0}+e\mathrm{log}M$$


Pulse Pressure Pulse Wave Velocity Wave Shape Heart Period Comparative Physiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schmidt-Nielsen K. Scaling. Why is animal size so important? 1984, London & New York, Cambridge University Press, pp 57.CrossRefGoogle Scholar
  2. 2.
    Westerhof N, Elzinga G. Normalized input impedance and arterial decay time over heart period are independent of animal size. Am J Physiol 1991;261:R126–R133.PubMedGoogle Scholar
  3. 3.
    Smulyan H, Marchais SJ, Pannier B, Guerin AP, Safar ME, London GM. Influence of body height on pulsatile hemodynamic data. J Am Coll Cardiol 1998;31:1103–1109.PubMedCrossRefGoogle Scholar
  4. 4.
    Holt JP, Rhode EA, Kines H. Ventricular volumes and body weight in mammals. Am J Physiol 1968;215:704–714PubMedGoogle Scholar
  5. 5.
    Altman PL, Dittmer DE (eds). Biological handbook. 1971, Bethesda, Federation of American Societies of Experimental Biology, pp 278, 320, 336–341.Google Scholar
  6. 6.
    Senzaki H, Chen C-H, Kass DA. Single beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 1996;94:2497–2506.PubMedCrossRefGoogle Scholar
  7. 7.
    Elzinga G, Westerhof N. Matching between ventricle and arterial load. Circ Res 1991;68:1495–1500.PubMedCrossRefGoogle Scholar
  8. 8.
    West GB, Woodruff WH, Brown JH. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Natl Acad Sci USA 2002;99:2473–2478.PubMedCrossRefGoogle Scholar
  9. 9.
    Barth E, Stämler G, Speiser B, Schaper J. Ultrastructural quantification of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 1992;24:669–681.PubMedCrossRefGoogle Scholar
  10. 10.
    Benetos A, Safar M, Rudnichi A, Smulyan H, Richard JL, Ducimetieere P, Guize L. Pulse pressure: a predictor of long-term cardiovascular mortality in a French male population. Hypertension 1997;30:1410–1415.PubMedCrossRefGoogle Scholar
  11. 11.
    Mitchell GF, Moye LA, Braunwald E, Rouleau JL, Bernstein V, Geltman EM, Flaker GC, Pfeffer MA. Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function. Circulation 1997;96:4254–4260.PubMedCrossRefGoogle Scholar
  12. 12.
    Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet 1997;3502:953–955.CrossRefGoogle Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  1. 1.Departments of Physiology and Pulmonology ICaR-VUVU University Medical CenterAmsterdamthe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologySwiss Federal Institute of TechnologyLausanneSwitzerland
  3. 3.Cardiovascular MedicineAberdeen UniversityAberdeenScotland

Personalised recommendations