Arterial Input Impedance

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble


Impedance is the relation between the pressure difference and flow of a linear system, for sinusoidal or oscillatory signals. Impedance completely describes the system and it can be derived from pulsatile pressure difference and pulsatile flow and the application of Fourier analysis. Inversely, when the impedance is known, a given flow allows for the calculation of pressure and vice versa. Systemic arterial and pulmonary arterial input impedance are a comprehensive description of the systemic and pulmonary arterial tree. Input impedances of organ systems may be derived as well. The longitudinal, transverse and characteristic impedance are discussed in Appendix 3.


Phase Angle Pulse Wave Velocity Input Impedance Arterial System Peripheral Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 1980;62:105–1116.PubMedCrossRefGoogle Scholar
  2. 2.
    Stergiopulos N, Meister J-J, Westerhof N. Scatter in the input impedance spectrum may result from the elastic nonlinearity of the arterial wall. Am J Physiol 1995;269:H1490–H1495.PubMedGoogle Scholar
  3. 3.
    Westerhof N, Elzinga G, Sipkema P. An artificial system for pumping hearts. J Appl Physiol 1971;31:776–781.PubMedGoogle Scholar
  4. 4.
    Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol 1999;276:H81–H88.PubMedGoogle Scholar
  5. 5.
    Sipkema P, Westerhof N. Effective length of the arterial system. Ann Biomed Eng 1975;3:296–307.PubMedCrossRefGoogle Scholar
  6. 6.
    Westerhof BE, van den Wijngaard JP, Murgo JP, Westerhof N. Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity. Hypertension 2008; 52:478–483.PubMedCrossRefGoogle Scholar
  7. 7.
    Sipkema P, Westerhof N, Randall OS. The arterial system characterized in the time domain. Cardiovasc Res 1980;14:270–279.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Huis GA, Sipkema P, Westerhof N. Coronary input impedance during the cardiac cycle as obtained by impulse response method. Am J Physiol 1987;253:H317–H324.PubMedGoogle Scholar
  9. 9.
    Westerhof N, Elzinga G. Normalized input impedance and arterial decay time over heart period are independent of animal size. Am J Physiol 1991;261:R126–R133.PubMedGoogle Scholar
  10. 10.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Manipulation of ascending aortic pressure and flow reflections with the Valsalva maneuver: relationship to input impedance. Circulation 1981;63:122–132.PubMedCrossRefGoogle Scholar
  11. 11.
    O’Rourke MF. Pulsatile arterial haemodynamics in hypertension. Aust N Z J Med 1976;6(suppl 2):40–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  1. 1.Departments of Physiology and Pulmonology ICaR-VUVU University Medical CenterAmsterdamthe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologySwiss Federal Institute of TechnologyLausanneSwitzerland
  3. 3.Cardiovascular MedicineAberdeen UniversityAberdeenScotland

Personalised recommendations