Skip to main content

Law of Poiseuille

Abstarct

With laminar and steady flow through a uniform tube of radius r i , the velocity profile over the cross-section is a parabola. The formula that describes the velocity (v) as a function of the radius, r is:

$$ {v}_{r}=\frac{\Delta P \cdot \text ({r}_{i}-{r}^{2})}{4 \cdot \eta \cdot \text l}={v}_{\mathrm{max}}(1-{r}^{2}/{r}_{i})$$

ΔP is the pressure drop over the tube of length (l), and η is blood viscosity. At the axis (r = 0), velocity is maximal, v max , with v max = ΔPr i 2/4ηl, while at the wall (r = r i ) the velocity is assumed to be zero. Mean velocity is:

$$ {v}_{mean}=\Delta P \cdot \text {r}_{i}^{2}/8\text h \cdot \text l=v_{\mathrm{max}}\text /2=Q/\pi {r}_{i}^{2}$$

and is found at r ≈ 0.7 r i .

Keywords

  • Poiseuille
  • Uniform Tube
  • Oscillatory Flow Theory
  • Wall Shear Stress
  • Mean Aortic Blood Flow

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • DOI: 10.1007/978-1-4419-6363-5_2
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
EUR   106.99
Price includes VAT (Finland)
  • ISBN: 978-1-4419-6363-5
  • Instant EPUB and PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4

References

  1. Weibel E. Symmorphosis. 2000, Cambridge, MA, Harvard University Press.

    Google Scholar 

  2. Womersley JR. The mathematical analysis of the arterial circulation in a state of oscillatory motion. 1957, Wright Air Dev. Center, Tech Report WADC-TR-56-614.

    Google Scholar 

  3. Poelmann RE, Gittenberger-de Groot AC, Hierck BP. The development of the heart and microcirculation: role of shear stress. Med Biol Eng Comput 2008;46:479–84.

    CrossRef  PubMed  Google Scholar 

  4. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, García-Cardeña G, Daley GQ. Biomechanical forces promote embryonic haematopoiesis. Nature 2009;459(7250):1131–5.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Cheng C, Helderman F, Tempel D, Segers D, Hierck B, Poelmann R, van Tol A, Duncker DJ, Robbers-Visser D, Ursem NT, van Haperen R, Wentzel JJ, Gijsen F, van der Steen AF, de Crom R, Krams R. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis 2007;195:225–35.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaas Westerhof .

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer US

About this chapter

Cite this chapter

Westerhof, N., Stergiopulos, N., Noble, M.I.M. (2010). Law of Poiseuille. In: Snapshots of Hemodynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6363-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6363-5_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6362-8

  • Online ISBN: 978-1-4419-6363-5

  • eBook Packages: MedicineMedicine (R0)