MSH Radiopeptides for Targeting Melanoma Metastases

  • Alex N. Eberle
  • Jean-Philippe Bapst
  • Martine Calame
  • Heidi Tanner
  • Sylvie Froidevaux
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 681)

Abstract

Radiolabeled peptides have become important tools for preclinical cancer research and in nuclear oncology they serve as diagnostic and more recently also as therapeutic agents. Whereas the development of receptor-mediated targeting for therapy has been confined to some radiolabeled antibodies and somatostatin/SRIF analogs, recent research into radiolabeled α-Melanocyte-stimulating hormone (α-MSH) and its receptor MC1R (over-)expressed by melanoma tumor cells has demonstrated that small metastatic melanoma lesions in experimental animals are specifically targeted by MSH radiopeptides. Thus MSH radiopharmaceuticals will eventually open a new avenue for the treatment of melanoma metastases in man, provided that the targeting efficiency can be further enhanced and nonspecific incorporation into nontarget organs, e.g., the kidneys, minimized. Some novel MSH lead compounds containing a glyco moiety, added negatively charged groups or a cyclic structure show very promising in vivo targeting characteristics.

Keywords

Oncol Radionuclide Tritium Octreotide Noma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vikram B, Coleman CN, Deye JA. Current status and future potential of advanced technologies in radiation oncology. Part 1. Challenges and resources. Oncology (Williston Park) 2009; 23:279–83.PubMedGoogle Scholar
  2. 2.
    Vikram B, Coleman CN, Deye JA. Current status and future potential of advanced technologies in radiation oncology. Part 2. State of the science by anatomic site. Oncology (Williston Park) 2009; 23:380–5.PubMedGoogle Scholar
  3. 3.
    Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004; 5:292–302.CrossRefPubMedGoogle Scholar
  4. 4.
    Eberle AN, Mild G, Froidevaux S. Receptor-mediated tumor targeting with radiopeptides. Part 1. General concepts and methods: applications to somatostatin receptor-expressing tumors. J Recept Signal Transduct 2004; 24:319–45.CrossRefGoogle Scholar
  5. 5.
    Reubi JC. Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J Nucl Med 1995; 36:1825–35.PubMedGoogle Scholar
  6. 6.
    Mariani G, Erba PA, Signore A. Receptor-mediated tumor targeting with radiolabeled peptides: there is more to it than somatostatin analogs. J Nucl Med 2006; 47:1904–6.PubMedGoogle Scholar
  7. 7.
    Britz-Cunningham SH, Adelstein SJ. Molecular targeting with radionuclides: state of science. J Nucl Med 2003; 44:1945–61.PubMedGoogle Scholar
  8. 8.
    Reubi JC, Mäcke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 2005; 46(Suppl 1):67S–75S.PubMedGoogle Scholar
  9. 9.
    Froidevaux S, Eberle AN. Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers 2002; 66:161–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Reubi JC. Somatostatin and other peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology 2004; 80(Suppl 1):51–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Eberle AN. The melanotropins: chemistry, physiology and mechanisms of action. Basel: Karger; 1988.Google Scholar
  12. 12.
    Eberle AN, Froidevaux S. Radiolabeled α-melanocyte-stimulating hormone analogs for receptor-mediated targeting of melanoma: from tritium to indium. J Mol Recognit 2003; 16:248–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Bard DR, Knight CG, Page-Thomas DP. A chelating derivative of α-melanocyte stimulating hormone as a potential imaging agent for malignant melanoma. Br J Cancer 1990; 62:919–22.PubMedGoogle Scholar
  14. 14.
    Eberle AN. Proopiomelanocortin and the melanocortin peptides. In: Cone RD, ed. The Melanocortin Receptors. Totowa: Humana Press, 2000:3–67.CrossRefGoogle Scholar
  15. 15.
    Eberle AN, Froidevaux S, Siegrist W. Melanocortins and melanoma. In: Cone RD, ed. The Melanocortin Receptors. Totowa: Humana Press, 2000:491–520.CrossRefGoogle Scholar
  16. 16.
    Eves PC, MacNeil S, Haycock JW. α-Melanocyte-stimulating hormone, inflammation and human melanoma. Peptides 2006; 27:444–52.CrossRefPubMedGoogle Scholar
  17. 17.
    De Luca M, Siegrist W, Bondanza S et al. α-Melanocyte stimulating hormone (α-MSH) stimulates normal human melanocyte growth by binding to high-affinity receptors. J Cell Sci 1993; 105:1079–84.PubMedGoogle Scholar
  18. 18.
    Siegrist W, Solca F, Stutz S et al. Characterization of receptors for α-melanocyte-stimulating hormone on human melanoma cells. Cancer Res 1989; 49:6352–58.PubMedGoogle Scholar
  19. 19.
    Ghanem GE, Comunale G, Libert A et al. Evidence for α-melanocyte-stimulating hormone (α-MSH) receptors on human malignant melanoma cells. Int J Cancer 1988; 41:248–55.CrossRefPubMedGoogle Scholar
  20. 20.
    Siegrist W, Stutz S, Eberle AN. Homologous and heterologous regulation of α-melanocyte-stimulating hormone receptors in human and mouse melanoma cell lines. Cancer Res 1994; 54:2604–10.PubMedGoogle Scholar
  21. 21.
    Jiang J, Sharma SD, Fink JL et al. Melanotropic peptide receptors: membrane markers of human melanoma cells. Exp Dermatol 1996; 5:325–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Salazar-Onfray F, Lopez M, Lundqvist A et al. Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker. Br J Cancer 2002; 87:414–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Bagutti C, Stolz B, Albert R et al. [111In]-DTPA-labeled analogues of α-MSH for the detection of MSH receptors in vitro and in vivo. Ann NY Acad Sci 1993; 680:445–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Bagutti C, Stolz B, Albert R et al. [111In]-DTPA-labeled analogues of α-Melanocyte-stimulating hormone for melanoma targeting: receptor binding in vitro and in vivo. Int J Cancer 1994; 58:749–55.CrossRefPubMedGoogle Scholar
  25. 25.
    Eberle AN, Mild G. Receptor-mediated tumor targeting with radiopeptides. Part 1. General principles and methods. J Recept Signal Transduct 2009; 29:1–37.CrossRefGoogle Scholar
  26. 26.
    Wei L, Butcher C, Miao Y et al. Synthesis and biologic evaluation of 64Cu-labeled rhenium-cyclized α-MSH peptide analog using a cross-bridged cyclam chelator. J Nucl Med 2007; 48:64–72.PubMedGoogle Scholar
  27. 27.
    Giblin MF, Wang N, Hoffman TJ et al. Design and characterization of α-melanotropin peptide analogs cyclized through rhenium and technetium metal coordination. Proc Natl Acad Sci USA 1998; 95:12814–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Raposinho PD, Correia JD, Alves S et al. A 99mTc(CO)3-labeled pyrazolyl-α-melanocyte-stimulating hormone analog conjugate for melanoma targeting. Nucl Med Biol 2008; 35:91–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Bapst JP, Froidevaux S, Calame M et al. Dimeric DOTA-α-melanocyte-stimulating hormone analogs: synthesis and in vivo characteristics of radiopeptides with high in vitro activity. J Recept Signal Transduct 2007; 27:383–409.CrossRefGoogle Scholar
  30. 30.
    Heppeler A, Froidevaux S, Eberle AN et al. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 2000; 7:971–94.PubMedGoogle Scholar
  31. 31.
    Froidevaux S, Calame-Christe M, Tanner H et al. Melanoma targeting with DOTA-α-melanocyte-stimulating hormone analogs: structural parameters affecting tumor uptake and kidney uptake. J Nucl Med 2005; 46:887–95.PubMedGoogle Scholar
  32. 32.
    Bagutti C, Oestreicher M, Siegrist W et al. α-MSH receptor autoradiography on mouse and human melanoma tissue sections and biopsies. J Recept Signal Transduct Res 1995; 15:427–42.CrossRefPubMedGoogle Scholar
  33. 33.
    Froidevaux S, Calame-Christe M, Schuhmacher J et al. A gallium-labeled DOTA-α-melanocyte-stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med 2004; 45:116–23.PubMedGoogle Scholar
  34. 34.
    Froidevaux S, Calame-Christe M, Tanner H et al. A novel DOTA-α-melanocyte-stimulating hormone analog for metastatic melanoma diagnosis. J Nucl Med 2002; 43:1699–706.PubMedGoogle Scholar
  35. 35.
    Chen J, Cheng Z, Owen NK et al. Evaluation of an 111In-DOTA-rhenium cyclized α-MSH analog: A novel cyclic-peptide analog with improved tumor-targeting properties. J Nucl Med 2001; 42:1847–55.PubMedGoogle Scholar
  36. 36.
    Cheng Z, Chen J, Miao Y et al. Modification of the structure of a metallopeptide: synthesis and biological evaluation of 111In-labeled DOTA conjugated rhenium-cyclized α-MSH analogues. J Med Chem 2002; 45:3048–56.CrossRefPubMedGoogle Scholar
  37. 37.
    Miao Y, Owen NK, Whitener D et al. In vivo evaluation of 188Re-labeled α-melanocyte stimulating hormone peptide analogs for melanoma therapy. Int J Cancer 2002; 101:480–487.CrossRefPubMedGoogle Scholar
  38. 38.
    Cheng Z, Chen J, Quinn TP et al. Radioiodination of rhenium cyclized α-Melanocyte stimulating hormone resulting in enhanced radioactivity localization and retention in melanoma. Cancer Res 2004; 64:1411–18.CrossRefPubMedGoogle Scholar
  39. 39.
    Miao Y, Hoffman TJ, Quinn TP. Tumor targeting properties of 90Y and 177Lu labeled α-Melanocyte stimulating hormone peptide analogues in a murine melanoma model. Nucl Med Biol 2005; 32:485–93.CrossRefPubMedGoogle Scholar
  40. 40.
    Miao Y, Fisher DR, Quinn TP. Reducing renal uptake of 90Y and 177Lu labeled α-melanocyte stimulating hormone peptide analogues. Nucl Med Biol 2006; 33:723–33.CrossRefPubMedGoogle Scholar
  41. 41.
    Cheng Z, Zhang L, Graves E et al. Small animal PET of melanocortin 1 receptor expression using a 18F-labeled α-melanocyte stimulating hormone analog. J Nucl Med 2007; 48:987–94.CrossRefPubMedGoogle Scholar
  42. 42.
    Wei L, Zhang X, Gallazzi F et al. Melanoma imaging using 111In-, 86Y-and 68Ga-labeled CHX-A”-Re(Arg11) CCMSH. Nucl Med Biol 2009; 36:345–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Miao Y, Quinn TP. Peptide-targeted radionuclide therapy for melanoma. Crit Rev Oncol Hematol 2008; 67:213–228.CrossRefPubMedGoogle Scholar
  44. 44.
    Miao Y, Gallazzi F, Guo H et al. 111In-labeled lactam bridge-cyclized α-melanocyte stimulating hormone peptide analogues for melanoma imaging. Bioconjug Chem 2008; 19:539–47.CrossRefPubMedGoogle Scholar
  45. 45.
    Bernard BF, Krenning EP, Breeman WA et al. D-Lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med 1997; 24:761–9.Google Scholar
  46. 46.
    Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 1998; 25:201–12.CrossRefPubMedGoogle Scholar
  47. 47.
    Bapst JP, Calame M, Tanner H et al. Glycosylated DOTA-α-melanocyte-stimulating hormone analogues for melanoma targeting: Influence of the site of glycosylation on in vivo biodistribution. Bioconjug Chem 2009; 20:984–93.CrossRefPubMedGoogle Scholar
  48. 48.
    Cheng Z, Xiong Z, Subbarayan M et al. 64Cu-labeled α-Melanocyte stimulating hormone analog for microPET imaging of melanocortin-1 receptor expression. Bioconjug Chem 2007; 18:765–72.CrossRefPubMedGoogle Scholar
  49. 49.
    Guo H, Shenoy N, Gershman BM et al. Metastatic melanoma imaging with an 111In-labeled lactam bridge-cyclized α-Melanocyte-stimulating hormone peptide. Nucl Med Biol 2009; 36:267–76.CrossRefPubMedGoogle Scholar
  50. 50.
    Guo H, Yang J, Gallazzi F et al. Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized α-melanocyte stimulating hormone peptide. Bioconjug Chem 2009; 20:2162–8.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alex N. Eberle
    • 1
  • Jean-Philippe Bapst
    • 1
  • Martine Calame
    • 1
  • Heidi Tanner
    • 1
  • Sylvie Froidevaux
    • 2
  1. 1.Laboratory of Endocrinology, Department of BiomedicineUniversity Hospital Basel and University Children’s Hospital, University of BaselBaselSwitzerland
  2. 2.Actelion Pharmaceuticals, LtdAllschwilSwitzerland

Personalised recommendations