Structure-Activity Relationships (SAR) of Melanocortin and Agouti-Related (AGRP) Peptides

  • Anamika Singh
  • Erica M. Haslach
  • Carrie Haskell-Luevano
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 681)


Structure-activity relationship (SAR) studies are a key feature of peptide and peptidomimetic research to improve the biological properties of native peptides and convert them into more drug-like compounds. Peptide SAR studies involve the systematic modification of a lead peptide to provide insight into the molecular determinants of the ligand-receptor interactions that result in either receptor stimulation or inhibition. This chapter will discuss structure-activity relationships of the endogenous and synthetic agonists and the antagonists of the melanocortin system.


Melanocortin Receptor Nuclear Magnetic Resonance Structure Melanocyte Stimulate Hormone Melanocortin System Chimeric Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chhajlani V, Wikberg JES. Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett 1992; 309(3):417–420.CrossRefPubMedGoogle Scholar
  2. 2.
    Mountjoy KG, Robbins LS, Mortrud MT et al. The cloning of a family of genes that encode the melanocortin receptors. Science 1992; 257:1248–1251.CrossRefPubMedGoogle Scholar
  3. 3.
    Roselli-Rehfuss L, Mountjoy KG, Robbins LS et al. Identification of a receptor for g melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci USA 1993; 90:8856–8860.CrossRefPubMedGoogle Scholar
  4. 4.
    Mountjoy KG, Mortrud MT, Low MJ et al. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endo 1994; 8:1298–1308.CrossRefGoogle Scholar
  5. 5.
    Gantz I, Konda Y, Tashiro T et al. Molecular cloning of a novel melanocortin receptor. J Biol Chem 1993; 268(11):8246–8250.PubMedGoogle Scholar
  6. 6.
    Gantz I, Miwa H, Konda Y et al. Molecular cloning, expression and gene localization of a fourth melanocortin receptor. J Biol Chem 1993; 268(20):15174–15179.PubMedGoogle Scholar
  7. 7.
    Gantz I, Shimoto Y, Konda Y et al. Molecular cloning, expression and characterization of a fifth melanocortin receptor. Biochem Biophys Res Commun 1994; 200(3):1214–1220.CrossRefPubMedGoogle Scholar
  8. 8.
    Eipper BA, Mains RE. Structure and biosynthesis of Pro-ACTH/Endorphin and related peptides. Endocrin Rev 1980; 1:1–26.CrossRefGoogle Scholar
  9. 9.
    Hruby VJ, Wilkes BC, Cody WL et al. Melanotropins: Structural, conformational and biological considerations in the development of superpotent and superprolonged analogs. Peptide Protein Rev 1984; 3:1–64.Google Scholar
  10. 10.
    Haskell-Luevano C, Sawyer TK, Hendrata S et al. Truncation studies of a-melanotropin peptides identifies tripeptide analogues exhibiting prolonged agonist bioactivity. Peptides 1996; 17:995–1002.PubMedGoogle Scholar
  11. 11.
    Lu D, Willard D, Patel IR et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 1994; 371(6500):799–802.CrossRefPubMedGoogle Scholar
  12. 12.
    Ollmann MM, Wilson BD, Yang Y-K et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278:135–138.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen AS, Marsh DJ, Trumbauer ME et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26(1):97–102.CrossRefPubMedGoogle Scholar
  14. 14.
    Butler AA, Kesterson RA, Khong K et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141(9):3518–3521.CrossRefPubMedGoogle Scholar
  15. 15.
    Huszar D, Lynch CA, Fairchild-Huntress V et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88:131–141.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen W, Kelly MA, Opitz-Araya X et al. Exocrine gland dysfunction in MC5-R deficient mice: Evidence for coordinated regulation of exocrine gland functions by melanocortin peptides. Cell 1997; 91:789–798.CrossRefPubMedGoogle Scholar
  17. 17.
    Harrold JA, Widdowson PS, Williams G. b-MSH: A functional ligand that regulated energy homeostasis via hypothalamic MC4-R? Peptides 2003; 24(3):397–405.CrossRefPubMedGoogle Scholar
  18. 18.
    Eberle AN. The melanotropins: Chemistry, physiology and mechanisms of action. Basel: Karger; 1988.Google Scholar
  19. 19.
    Holder JR, Haskell-Luevano C. Melanocortin Ligands: 30 Years of structure-activity relationship (SAR) studies. Med Res Rev 2004; 24(3):325–356.CrossRefPubMedGoogle Scholar
  20. 20.
    Irani BG, Holder JR, Todorovic A et al. Progress in the development of melanocortin receptor selective ligands. Curr Pharm Des 2004; 10(28):3443–3479.CrossRefPubMedGoogle Scholar
  21. 21.
    Sawyer TK, Sanfillippo PJ, Hruby VJ et al. 4-Norleucine, 7-D-Phenylalanine-a-melanocyte-stimulating hormone: A highly potent a-melanotropin with ultra long biological activity. Proc Natl Acad Sci USA 1980; 77:5754–5758.CrossRefPubMedGoogle Scholar
  22. 22.
    Hruby VJ, Wilkes BC, Hadley ME et al. a-Melanotropin: The minimal active sequence in the frog skin bioassay. J Med Chem 1987; 30:2126–2130.CrossRefPubMedGoogle Scholar
  23. 23.
    Castrucci AML, Hadley ME, Sawyer TK et al. a-Melanotropin: The minimal active sequence in the lizard skin bioassay. Gen Comp Endocrinol 1989; 73:157–163.CrossRefPubMedGoogle Scholar
  24. 24.
    Haslach EM, Schaub JW, Haskell-Luevano C. b-Turn secondary structure and melanocortin ligands. Bioorg Med Chem 2009; 17:952–958.CrossRefPubMedGoogle Scholar
  25. 25.
    Haskell-Luevano C, Rosenquist Å, Souers A et al. Compounds that activate the mouse melanocortin-1 receptor identified by screening a small molecule library based upon the b-turn. J Med Chem 1999; 42:4380–4387.CrossRefPubMedGoogle Scholar
  26. 26.
    Haskell-Luevano C, Holder JR, Monck EK et al. Characterization of melanocortin ndp-msh agonist peptide fragments at the mouse central and peripheral melanocortin receptors. J Med Chem 2001; 44:2247–2252.CrossRefPubMedGoogle Scholar
  27. 27.
    Sahm UG, Olivier GWJ, Branch SK et al. Synthesis and biological evaluation of a-MSH analogs substituted with alanine. Peptides 1994; 15(7):1297–1302.CrossRefPubMedGoogle Scholar
  28. 28.
    Holder JR, Bauzo RM, Xiang Z et al. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors: I modifications at the his position. J Med Chem 2002; 45:2801–2810.CrossRefPubMedGoogle Scholar
  29. 29.
    Holder JR, Xiang Z, Bauzo RM et al. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors: Part 3 modifications at the Arg position. Peptides 2003; 24:73–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Holder JR, Xiang Z, Bauzo RM et al. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors: Part 4 modifications at the Trp position. J Med Chem 2002; 45:5736–5744.CrossRefPubMedGoogle Scholar
  31. 31.
    Holder JR, Bauzo RM, Xiang Z et al. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors: Part 2 modifications at the Phe position. J Med Chem 2002; 45:3073–3081.CrossRefPubMedGoogle Scholar
  32. 32.
    Proneth B, Pogozheva ID, Portillo FP et al. Melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 modified at the para position of the benzyl side chain (DPhe): Importance for mouse melanocortin-3 receptor agonist versus antagonist activity. J Med Chem 2008; 51(18):5585–5593.CrossRefPubMedGoogle Scholar
  33. 33.
    Joseph CG, Sorensen NB, Wood MS et al. Modified melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the arginine side chain with ureas and thioureas. J Pept Res 2005; 66(5):297–307.CrossRefPubMedGoogle Scholar
  34. 34.
    Danho W, Swistok J, Wai-Hing Cheung A et al. Structure-activity relationship of linear peptide Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) at the human melanocortin-1 and-4 receptors: DPhe(7) and Trp(9) substitution. Bioorg Med Chem Lett 2003; 13(4):649–652.CrossRefPubMedGoogle Scholar
  35. 35.
    Cheung AW, Danho W, Swistok J et al. Structure-activity relationship of linear peptide Bu-His-DPhe-Arg-Trp-Gly-NH(2) at the human melanocortin-1 and-4 receptors: histidine substitution. Bioorg Med Chem Lett 2003; 13(1):133–137.CrossRefPubMedGoogle Scholar
  36. 36.
    Cheung A, Danho W, Swistok J et al. Structure-activity relationship of linear peptide Bu-His-DPhe-Arg-Trp-Gly-NH(2) at the human melanocortin-1 and-4 receptors: arginine substitution. Bioorg Med Chem Lett 2002; 12(17):2407–2410.CrossRefPubMedGoogle Scholar
  37. 37.
    Al-Obeidi F, Castrucci AM, Hadley ME et al. Potent and prolonged acting cyclic lactam analogues of a-melanotropin: Design based on molecular dynamics. J Med Chem 1989; 32:2555–2561.CrossRefPubMedGoogle Scholar
  38. 38.
    Hruby VJ, Lu D, Sharma SD et al. Cyclic lactam a-melanotropin analogues of Ac-Nle4-c[Asp5, DPhe7, Lys10]-a-MSH(4–10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J Med Chem 1995; 38:3454–3461.CrossRefPubMedGoogle Scholar
  39. 39.
    Al-Obeidi F, Hruby VJ, Yaghoubi N et al. Synthesis and biological activities of fatty acid conjugates of a cyclic lactam a-melanotropin. J Med Chem 1992; 35:118–123.CrossRefPubMedGoogle Scholar
  40. 40.
    Todorovic A, Holder JR, Bauzo RM et al. N-terminal fatty acylated His-DPhe-Arg-Trp-NH2 tetrapeptides: Influence of fatty acid chain length on potency and selectivity at the mouse melanocortin receptors and human melanocytes. J Med Chem 2005; 48(9):3328–3336.CrossRefPubMedGoogle Scholar
  41. 41.
    Chaturvedi DN, Knittel JJ, Hruby VJ et al. Synthesis and biological actions of highly potent and prolonged acting biotin-labeled melanotropins. J Med Chem 1984; 27:1406–1410.CrossRefPubMedGoogle Scholar
  42. 42.
    Chaturvedi DN, Hruby VJ, Castrucci AM et al. Synthesis and biological evaluation of the superagonist [Na-Chlorotriazinylaminofluorescein-Ser1, Nle4, D-Phe7]-a-MSH. J of Pharmaceutical Sciences 1985; 74:237–240.CrossRefGoogle Scholar
  43. 43.
    Bowen M, Monguchi Y, Sankaranarayanan R et al. Design, synthesis and validation of a branched flexible linker for bioactive peptides. J Org Chem 2007; 72:1675–1680.CrossRefPubMedGoogle Scholar
  44. 44.
    Holder JR, Marques FF, Xiang Z et al. Characterization of aliphatic, cyclic and aromatic N-terminally “Capped” His-DPhe-Arg-Trp-NH2 melanocortin tetrapeptides at the melanocortin receptors. Eur J Pharmacol 2003; 462:41–52.CrossRefPubMedGoogle Scholar
  45. 45.
    Koikov LN, Ebetino FH, Solinsky MG et al. Sub-nanomolar hMC1R agonists by end-capping of the melanocortin tetrapeptide His-D-Phe-Arg-Trp-NH(2). Bioorg Med Chem Lett 2003; 13(16):2647–2650.CrossRefPubMedGoogle Scholar
  46. 46.
    Koikov LN, Ebetino FH, Hayes JC et al. End-capping of the modified melanocortin tetrapeptide (p-Cl)Phe-D-Phe-Arg-Trp-NH2 as a route to hMC4R agonists. Bioorg Med Chem Lett 2004; 14(19):4839–4842.CrossRefPubMedGoogle Scholar
  47. 47.
    Koikov LN, Ebetino FH, Solinsky MG et al. Analogs of sub-nanomolar hMC1R agonist LK-184 [Ph(CH2)3CO-His-D-Phe-Arg-Trp-NH2]. An additional binding site within the human melanocortin receptor 1? Bioorg Med Chem Lett 2004; 14(15):3997–4000.CrossRefPubMedGoogle Scholar
  48. 48.
    Haskell-Luevano C, Sawyer TK, Trumpp-Kallmeyer S et al. Three-dimensional molecular models of the hMC1R melanocortin receptor: Complexes with melanotropin peptide agonists. Drug Design and Discovery 1996; 14:197–211.PubMedGoogle Scholar
  49. 49.
    Haskell-Luevano C, Cone RD, Monck EK et al. Structure activity studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of agouti-related protein (AGRP), melanocortin agonist and synthetic peptide antagonist interaction determinants. Biochemistry 2001; 40(20):6164–6179.CrossRefPubMedGoogle Scholar
  50. 50.
    Sargent DF, Schwyzer R. Membrane lipid phase as catalyst for peptide-receptor interactions. Proc Natl Acad Sci USA 1986; 83:5774–5778.CrossRefPubMedGoogle Scholar
  51. 51.
    Yan LZ, Hsiung HM, Heiman M. Structure-activity relationships of β-MSH derived melanocortin-4 receptor peptide agonists. Current Topics in Med Chem 2007; 7:1052–1067.CrossRefGoogle Scholar
  52. 52.
    Balse-Srinivasan P, Grieco P, Cai M et al. Structure-activity relationships of novel cyclic α-MSH/β-MSH hybrid analogues that lead to potent and selective ligands for the human MC3R and human MC5R. J Med Chem 2003; 46(17):3728–3733.CrossRefPubMedGoogle Scholar
  53. 53.
    Grieco P, Balse-Srinivasan P, Han G et al. Synthesis and biological evaluation on hMC3, hMC4 and hMC5 receptors of g-MSH analogs substituted with L-Alanine. J Pept Res 2002; 59(5):203–210.CrossRefPubMedGoogle Scholar
  54. 54.
    Grieco P, Balse PM, Weinberg D et al. D-Amino acid scan of g-Melanocyte-stimulating hormone: Importance of Trp(8) on human MC3 receptor selectivity. J Med Chem 2000; 43(26):4998–5002.CrossRefPubMedGoogle Scholar
  55. 55.
    Balse-Srinivasan P, Grieco P, Cai M et al. Structure-activity relationships of g-MSH analogues at the human melanocortin MC3, MC4 and MC5 receptors. Discovery of highly selective hMC3R, hMC4R and hMC5R analogues. J Med Chem 2003; 46(23):4965–4973.CrossRefPubMedGoogle Scholar
  56. 56.
    Oosterom J, Burbach JP, Gispen WH et al. Asp10 in Lys-Gamma2-MSH fetermines delective activation of the melanocortin MC3 receptor. Eur J Pharmacol 1998; 354(1):R9–11.CrossRefPubMedGoogle Scholar
  57. 57.
    Schwyzer R. ACTH: A short introductory review. Ann N Y Acad Sci 1977; 297:3–26.CrossRefPubMedGoogle Scholar
  58. 58.
    Blake J, Wang KT, Li CH. Adrenocorticotropin. Solid-phase synthesis of 1–19-adrenocorticotropic hormone, Alanyl-1–19-adrenocorticotropic hormone and Prolyl-1–19-adrenocorticotropic hormone and their adrenocorticotropic activity. Biochemistry 1972; 11:438–442.CrossRefPubMedGoogle Scholar
  59. 59.
    Li CH, Hemmasi B. Adrenocorticotropin. 40. The Synthesis of a protected nonapeptide and of a biologically active nonadecapeptide related to adrenocorticotropic hormone. (5-glutamine) adrenocorticotropin-(1–19). J Med Chem 1972; 15:217–219.CrossRefPubMedGoogle Scholar
  60. 60.
    Ramachandran J, Chung D, Li CH. Adrenocorticotropins. Xxxiv. Aspects of structure-activity relationships of the ACTH molecule. Synthesis of a heptadecapeptide amide, an octadecapeptide amide and a nonadecapeptide amide possessing high biological activities. J Am Chem Soc 1965; 87:2696–2708.CrossRefPubMedGoogle Scholar
  61. 61.
    Haskell-Luevano C, Todorovic A, Gridley K et al. The melanocortin pathway: Effects of voluntary exercise on melanocortin-4 receptor knockout mice and ACTH(1–24) ligand structure activity relationships at the melanocortin-2 receptor. Endocrine Res 2004; 30:591–597.CrossRefGoogle Scholar
  62. 62.
    Seelig S, Sayers G, Schwyzer R et al. Isolated adrenal cells: ACTH(11–24), a competitive antagonist of ACTH(1–39) and ACTH(1–10). FEBS Lett 1971; 19(3):232–234.CrossRefPubMedGoogle Scholar
  63. 63.
    Engel MH, Sawyer TK, Hadley ME et al. Quantitative determination of amino acid racemization in Heat-Alkali-Treated melanotropins: Implications for peptide hormone strucute-function studies. Anal Biochem 1981; 116:303–311.CrossRefPubMedGoogle Scholar
  64. 64.
    Bednarek M, MacNeil T, Tang R et al. Analogs of a-melanocyte stimulating hormone with high agonist potency and selectivity at human melanocortin receptor 1b: The role of Trp9 in molecular recognition. Biopolymers 2007; 89:401–408.CrossRefGoogle Scholar
  65. 65.
    Bednarek M, MacNeil T, Tang R et al. Potent and selective agonists of a-melanotropin (aMSH) action at human melanocortin receptor 5; linear analogs of a-melanotropin. Peptides 2007; 28:1020–1028.CrossRefPubMedGoogle Scholar
  66. 66.
    Hruby VJ, Mosberg HI. Conformational and dynamic considerations in peptide structure-function studies. Peptides 1982; 3(3):329–336.CrossRefPubMedGoogle Scholar
  67. 67.
    Hruby V. Designing peptide receptor agonists and antagonists. Nat Rev Drug Discov 2002; 1:847–858.CrossRefPubMedGoogle Scholar
  68. 68.
    Sawyer TK, Hruby VJ, Darman PS et al. [half-Cys4,half-Cys10]-a-Melanocyte-stimulating hormone: A cyclic a-melanotropin exhibiting superagonist biological activity. Proc Natl Acad Sci USA 1982; 79:1751–1755.CrossRefPubMedGoogle Scholar
  69. 69.
    Schioth HB, Muceniece R, Mutulis F et al. Selectivity of cyclic [DNal7] and [DPhe7] substituted MSH analogues for the melanocortin receptor subtypes. Peptides 1997; 18(7):1009–1013.CrossRefPubMedGoogle Scholar
  70. 70.
    Schioth HB, Mutulis F, Muceniece R et al. Discovery of novel melanocortin4 receptor selective MSH analogues. Br J Pharmacol 1998; 124(1):75–82.CrossRefPubMedGoogle Scholar
  71. 71.
    Skuladottir GV, Jonsson L, Skarphedinsson JO et al. Long term orexigenic effect of a novel melanocortin 4 receptor selective antagonist. Br J Pharmacol 1999; 126(1):27–34.CrossRefPubMedGoogle Scholar
  72. 72.
    Al-Obeidi F, Hruby VJ, Castrucci AM et al. Design of potent linear a-Melanotropin 4-10 analogues modified in positions 5 and 10. J Med Chem 1989; 32(1):174–179.CrossRefPubMedGoogle Scholar
  73. 73.
    Fan W, Boston BA, Kesterson RA et al. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997; 385:165–168.CrossRefPubMedGoogle Scholar
  74. 74.
    Hess S, Linde Y, Ovadia O et al. Backbone cyclic peptidomimetic melanocortin-4 receptor agonist as a novel orally administrated drug lead for treating obesity. J Med Chem 2008; 51(4):1026–1034.CrossRefPubMedGoogle Scholar
  75. 75.
    Linde Y, Ovadia O, Safrai E et al. Structure-activity relationship and metabolic stability studies of backbone cyclization and N-methylation of melanocortin peptides. Biopolymers 2008; 90:671–690.CrossRefPubMedGoogle Scholar
  76. 76.
    Todorovic A, Holder JR, Scott JW et al. Synthesis and activity of the melanocortin Xaa-DPhe-Arg-Trp-NH2 tetrapeptides with amide bond modifications. J Pept Res 2004; 63(3):270–278.CrossRefPubMedGoogle Scholar
  77. 77.
    McNulty JC, Jackson PJ, Thompson DA et al. Structures of the agouti signaling protein. J Mol Biol 2005; 346(4):1059–1070.CrossRefPubMedGoogle Scholar
  78. 78.
    Shutter JR, Graham M, Kinsey AC et al. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes and Development 1997; 11(5):593–602.CrossRefPubMedGoogle Scholar
  79. 79.
    Haskell-Luevano C, Monck EK. Agouti-related protein (AGRP) functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regulatory Peptides 2001; 99:1–7.CrossRefPubMedGoogle Scholar
  80. 80.
    Nijenhuis WA, Oosterom J, Adan RA. AGRP(83–132) Acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 2001; 15(1):164–171.CrossRefPubMedGoogle Scholar
  81. 81.
    McNulty JC, Thompson DA, Bolin KA et al. High-resolution NMR structure of the chemically-synthesized melanocortin receptor binding domain AGRP(87-132) of the agouti-related protein. Biochemistry 2001; 40:15520–15527.CrossRefPubMedGoogle Scholar
  82. 82.
    Tota MR, Smith TS, Mao C et al. Molecular interaction of agouti protein and agouti-related protein with human melanocortin receptors. Biochemistry 1999; 38(3):897–904.CrossRefPubMedGoogle Scholar
  83. 83.
    Haskell-Luevano C, Monck EK, Wan YP et al. The agouti-related protein decapeptide (Yc[CRFFNAFC] Y) possesses agonist activity at the murine melanocortin-1 receptor. Peptides 2000; 21(5):683–689.CrossRefPubMedGoogle Scholar
  84. 84.
    Thirumoorthy R, Holder JR, Bauzo RM et al. Novel agouti-related protein (AGRP) based melanocortin-1 receptor antagonist. J Med Chem 2001; 44:4114–4124.CrossRefPubMedGoogle Scholar
  85. 85.
    Jarosinski MA, Dodson SW, Harding BJ et al. Design and synthesis of simplified AGRP(65–112) analogues: Protein-mimetics with affinity at the melanocortin receptors. 2nd International and 17th American Peptide Symposium. San Diego, CA; 2001:Poster #322.Google Scholar
  86. 86.
    Joseph CG, Bauzo RM, Xiang Z et al. Elongation studies of the human agouti-related protein (AGRP) core decapeptide (Yc[CRFFNAFC]Y) results in antagonism at the mouse melanocortin-3 receptor. Peptides 2003; 27:263–270.CrossRefGoogle Scholar
  87. 87.
    Jackson PJ, McNulty JC, Yang YK et al. Design, pharmacology and NMR structure of a minimized cystine knot with agouti-related protein activity. Biochemistry 2002; 41(24):7565–7572.CrossRefPubMedGoogle Scholar
  88. 88.
    Joseph CG, Wang XS, Scott JW et al. Stereochemical studies of the monocyclic agouti-related protein (103–122) Arg-Phe-Phe residues: Conversion of a melanocortin-4 receptor antagonist into an agonist and results in the discovery of a potent and selective melanocortin-1 agonist. J Med Chem 2004; 47(27):6702–6710.CrossRefPubMedGoogle Scholar
  89. 89.
    Wilczynski A, Wang XS, Joseph CG et al. Identification of putative agouti-related protein(87–132)-Melanocortin-4 receptor interactions by homology molecular modeling and validation using chimeric peptide ligands. J Med Chem 2004; 47(9):2194–2207.CrossRefPubMedGoogle Scholar
  90. 90.
    Wilczynski AM, Wang XS, Bauzo RM et al. Structural characterization of a potent (Cys101-Cys119, Cys110-Cys117) bicyclic agouti-related protein (AGRP) melanocortin receptor antagonist. J Med Chem 2004; 47:5662–5673.CrossRefPubMedGoogle Scholar
  91. 91.
    Han G, Quillan J, Carlson K et al. Design of novel vhimeric melanotropin-deltorphin analogues. Discovery of the first potent human melanocortin 1 receptor antagonist. J Med Chem 2003; 46:810–819.CrossRefPubMedGoogle Scholar
  92. 92.
    Joseph CG, Wilczynski AM, Holder JR et al. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity. Peptides 2003; 24:1899–1908.CrossRefPubMedGoogle Scholar
  93. 93.
    Wilczynski A, Wilson KR, Scott JW et al. Structure-activity relationships of the unique and potent agouti-related protein (AGRP)-melanocortin chimeric Tyr-c[b-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2 peptide template. J Med Chem 2005; 48(8):3060–3075.CrossRefPubMedGoogle Scholar
  94. 94.
    Jackson PJ, Yu B, Hunrichs B et al. Chimeras of the agouti-related protein: Insights into agonist and antagonist selectivity of melanocortin receptors. Peptides 2005; 26(10):1978–1987.CrossRefPubMedGoogle Scholar
  95. 95.
    Bures, EJ, Hui, JO; Young, Y et al. Determination of disulfide structure in agouti-related protein (AGRP) by stepwise reduction and alkylation. Biochemistry 1998; 37:12172–12177.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anamika Singh
    • 1
  • Erica M. Haslach
    • 1
  • Carrie Haskell-Luevano
    • 1
  1. 1.Department of PharmacodynamicsUniversity of FloridaGainesville FloridaUSA

Personalised recommendations