Advertisement

Force Fields

  • Tamar Schlick
Chapter
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)

Abstract

In this chapter, we discuss only basic functional expressions of the potential energy function, emphasizing the simple forms typically used for biomolecules. For biomolecular systems, computational speed is premium, and the use of more complex terms (higher-order expansions, cross terms, etc.), as employed for accurate modeling of smaller systems, is not practical. The next chapter discusses important topics related to this computational complexity of the nonbonded terms: spherical cutoff techniques, fast electrostatic evaluation techniques (Ewald and fast multipoles), and implicit solvation alternatives.

Keywords

Force Field Bond Angle Morse Potential Potential Energy Function Harmonic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 24.
    N. L. Allinger. Calculation of molecular structure and energy by force-field methods. Adv. Phys. Org. Chem., 13:1–85, 1976.MathSciNetCrossRefGoogle Scholar
  2. 27.
    N. L. Allinger, J. T. Fermann, W. D. Allen, and H. F. Schaefer, III. The torsional conformations of butane: Definitive energetics from ab initio methods. J. Chem. Phys., 106:5143–5150, 1997.MATHCrossRefGoogle Scholar
  3. 28.
    N. L. Allinger, M. A. Miller, F. A. VanCatledge, and J. A. Hirsch. Conformational analysis. LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer Hendrickson Wiberg method. J. Amer. Chem. Soc., 89: 4345–4357, 1967.Google Scholar
  4. 30.
    N. L. Allinger, Y. H. Yuh, and J.-H. Lii. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Amer. Chem. Soc., 111:8551–8566, 1989.Google Scholar
  5. 105.
    M. D. Beachy, D. Chasman, R. B. Murphy, T. A. Halgren, and R. A. Friesner. ccurate Ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields. J. Amer. Chem. oc., 119:5908–5920, 1997.CrossRefGoogle Scholar
  6. 107.
    D. Beard and T. Schlick. Inertial stochastic dynamics: II. influence of inertia on slow kinetic properties of supercoiled DNA. J. Chem. Phys., 112:7323–7338, 2000.Google Scholar
  7. 132.
    R. B. Best, N.-V. Buchete, and G. Hummer. Are current molecular dynamics force fields too helical? Biophys. J., 95:L07–L09, 2008.CrossRefGoogle Scholar
  8. 185.
    U. Burkert and N. L. Allinger. Molecular Mechanics, volume 177 of American Chemical Society Monograph. ACS, Washington D. C., 1982.Google Scholar
  9. 197.
    C. R. Cantor and P. R. Schimmel. Biophysical Chemistry, volume 1–3. W. H. reeman and Company, San Francisco, 1980.Google Scholar
  10. 218.
    T. E. Cheatham, III, P. Cieplak, and P.A. Kollman. A modified version of the cornel et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. truct. Dynam., 16:845–862, 1999.Google Scholar
  11. 219.
    T. E. Cheatham, III and P. A. Kollman. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J. Mol. iol., 259:434–444, 1996.CrossRefGoogle Scholar
  12. 221.
    T. E. Cheatham, III and M. A. Young. Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise. Biopolymers, 56:232–256, 2001.CrossRefGoogle Scholar
  13. 223.
    J. Chen and C. L. Brooks, III. Implicit modeling of nonpolar solvation for simu- lating protein folding and conformational transitions. Phys. Chem. Chem. Phys., 10:471–481, 2008.CrossRefGoogle Scholar
  14. 265.
    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D.M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. . Amer. Chem. Soc., 117:5179–5197, 1995.Google Scholar
  15. 301.
    P. Derreumaux and G. Vergoten. A new spectroscopic molecular mechanics force field. Parameters for proteins. J. Chem. Phys., 102:8586–8605, 1995.Google Scholar
  16. 341.
    eferences [340] Y. Duan, L. Wang, and P. A. Kollman. The early stage of folding of villin head- piece subdomain observed in a 200-nanosecond fully solvate molecular dynamics simulation. Proc. Natl. Acad. Sci. USA, 95:9897–9902, 1998.Google Scholar
  17. 365.
    D. L. Ensign, P. M. Kasson, and V. S. Pande. Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J. Mol. Biol., 374:806–816, 2007.CrossRefGoogle Scholar
  18. 378.
    eferences [376] M. Feig and C. L. Brooks, III. Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr. Opin. Struct. Biol., 14:217–224, 2004.Google Scholar
  19. 379.
    M. Feig,W. Im, and C. L. Brooks, III. Implicit solvation based on generalized Born theory in different dielectric environments. J. Chem. Phys., 120:903–911, 2004.CrossRefGoogle Scholar
  20. 381.
    M. Feig and B. M. Pettitt. Experiment vs. force fields: DNA conformation from molecular dynamics simulations. Phys. Chem. B, 101(38):7361–7363, 1997.Google Scholar
  21. 415.
    M. C. Foley and T. Schlick. Simulations of dna pol λ R517 mutants indicate 517’s crucial role in ternary complex stability and suggest DNA slippage origin. J. Amer. hem. Soc., 130:3967–3977, 2008.CrossRefGoogle Scholar
  22. 424.
    H. Frauenfelder, S. G. Sligar, and P. G. Wolynes. The energy landscapes and motions of proteins. Science, 254:1598–1603, 1991.CrossRefGoogle Scholar
  23. 426.
    P. L. Freddolino, F. Liu, M. Gruebele, and K. Schulten. Ten-microsecond molecu- lar dynamics simulation of a fast-folding WW domain. Biophys. J., 94:L75–L77, 2008.CrossRefGoogle Scholar
  24. 427.
    P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and K. Schulten. olecular dynamics simulations of the complete satellite tobacco mosaic virus. tructure, 14:437–449, 2006.Google Scholar
  25. 445.
    A. E. Garcia and J. N. Onuchic. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci. USA, 100:13898–13903, 2003.CrossRefGoogle Scholar
  26. 455.
    S. Ghosh, A. Nie, J. An, and Z. Huang. Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 10:194–202, 2006.CrossRefGoogle Scholar
  27. 472.
    H. Gonzlez-Daz, Y. Gonzlez-Daz, L. Santana, F.M. Ubeira, and E. Uriarte. roteomics, networks and connectivity indices. Proteomics, 8:750–778, 2008.CrossRefGoogle Scholar
  28. 497.
    E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, New York, NY, second edition, 1996.Google Scholar
  29. 498.
    P. J. Hajduk and J. Greer. A decade of fragment-based drug design: Strategic advances and lessons learned. Nat. Rev. Drug Disc., 6:211–219, 2007.CrossRefGoogle Scholar
  30. 500.
    T. A. Halgren. Merck molecular force field: II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem., 17:520–552, 1996.Google Scholar
  31. 501.
    T. A. Halgren. MMFF VI. MMFF94s option for energy minimization studies. . Comput. Chem., 20:720–729, 1999.Google Scholar
  32. 522.
    S. C. Harvey, M. Dlakic, J. Griffith, R. Harrington, K. Park, D. Sprous, and W. Zacharias.What is the basis of sequence-directed curvature in DNAs containing A-tracts? J. Biomol. Struct. Dynam., 13:301–307, 1995.CrossRefGoogle Scholar
  33. 528.
    Y. Hashem, E.Westhof, and P. Auffinger. Milestones in molecular dynamics simu- lations of RNA systems. In T. Schwede and M. Peitsch, editors, Computational Structural Biology, pages 363–399. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.Google Scholar
  34. 532.
    A. Hastings, P. Arzberger, B. Bolker, S. Collins, A. Irves, N. Johnson, and M. Palmer. Quantitative bioscience for the 21st century. Bioscience, 55:511–517, 2005.CrossRefGoogle Scholar
  35. 548.
    T. Hermann and D. J. Patel. Adaptive recognition by nucleic acid aptamers. cience, 287:820–825, 2000.Google Scholar
  36. 556.
    R.W. Hockney and J.WEastwood. Computer Simulation Using Particles. Institute of Physics, London, England, 1988.Google Scholar
  37. 568.
    W. Hoover. Classical dynamics: Equilibrium phase-space distributions. Phys. Rev., 31:1695–1697, 1985.CrossRefGoogle Scholar
  38. 620.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Amer. Chem. Soc., 118:11225–11236, 1996.CrossRefGoogle Scholar
  39. 629.
    eferences [627] H. Kamberaj and A. van der Vaart. Multiple scaling replica exchange for the conformational sampling of biomolecules in explicit water. J. Chem. Phys., 127:234102, 2007.Google Scholar
  40. 630.
    S. C. L. Kamerlin, M. Haranczyk, and A. Warshel. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: Accelerated QM/MM studies of pK, redox reactions and solvation free energies. J. Phys. Chem. B, 113:1253–1272, 2009.CrossRefGoogle Scholar
  41. 652.
    A. Kitao and N. G¯o. Investigating protein dynamics in collective coordinate space. urr. Opin. Struct. Biol., 9:164–169, 1999.Google Scholar
  42. 668.
    F. E. Koehn and G. T. Carter. The evolving role of natural products in drug discovery. Nat. Rev. Drug Disc., 4:206–220, 2005.CrossRefGoogle Scholar
  43. 701.
    F. Lankaˇs, J. ˇSponer, P. Hobza, and J. Langowski. Sequence-dependent elastic properties of DNA. J. Mol. Biol., 299:695–709, 2000.Google Scholar
  44. 750.
    M. Levitt and S. Lifson. Refinement of protein conformations using a macromolec- ular energy minimization procedure. J. Mol. Biol., 46:269–279, 1969.CrossRefGoogle Scholar
  45. 751.
    M. Levitt and A. Warshel. Computer simulation of protein folding. Nature, 253:694–698, 1975.Google Scholar
  46. 764.
    K. Liberek, A. Lewandowska, and S. Zietkiewicz. Chaperones in control of protein disaggregation. EMBO J., 27:328–335, 2008.CrossRefGoogle Scholar
  47. 766.
    S. Lifson. Potential energy functions for structural molecular biology. In D. B. avies, W. Saenger, and S. S. Danyluk, editors, Methods in Structural Molecular Biology, pages 359–385. Plenum Press, London, England, 1981.Google Scholar
  48. 767.
    S. Lifson. Theoretical foundation for the empirical force field method. Gazzetta Chimica Italiana, 116:687–692, 1986.Google Scholar
  49. 795.
    B. A. Luty, I. G. Tironi, and W. F. Van Gunsteren. Lattice-sum methods for calculating electrostatic interactions in molecular simulations. J. Chem. Phys., 103:3014–3021, 1995.CrossRefGoogle Scholar
  50. 797.
    B. Ma and N. L. Allinger. Calculation of rz structures from rs structures. J. Mol. truct., 413–414:395–404, 1997.CrossRefGoogle Scholar
  51. 798.
    B. Ma, J.-H. Lii, and N. L. Allinger. Molecular polarizabilities and induced dipole moments in molecular mechanics. J. Comput. Chem., 21:813–825, 2000.CrossRefGoogle Scholar
  52. 802.
    D. MacDonald, K. Herbert, X. Zhang, T. Polgruto, and P. Lu. Solution structure of an A-tract DNA bend. J. Mol. Biol., 306:1081–1098, 2001.CrossRefGoogle Scholar
  53. 803.
    A. Machado-Lima, H.A. del Portillo, and A.M. Durham. Computational methods in noncoding RNA research. J. Math. Biol., 56:15–49, 2008.MathSciNetMATHCrossRefGoogle Scholar
  54. 804.
    A. D. MacKerell, Jr. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem., 25:1584–1604, 2004.CrossRefGoogle Scholar
  55. 805.
    A. D. MacKerell, Jr., N. Banavali, and N. Foloppe. Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56:257–265, 2001.CrossRefGoogle Scholar
  56. 806.
    A. D. MacKerell, Jr. and N. K. Banavali. All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem., 21:105–120, 2000.Google Scholar
  57. 807.
    A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. eiher, III., B. Roux, M. Schlenkrich, J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. An all-atom empirical potential for molecular modeling and dynamics of proteins. J. Phys. Chem. B, 102:3586– 3616, 1998.Google Scholar
  58. 809.
    A. D. MacKerell, Jr., M. Feig, and C. L. Brooks, III. Improved treatment of the protein backbone in empirical force fields. J. Amer. Chem. Soc., 126:698–699, 2004.CrossRefGoogle Scholar
  59. 841.
    D. H. Mathews and D. H. Turner. Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol., 317:191–203, 2002.CrossRefGoogle Scholar
  60. 842.
    D. Matsuda and T. W. Dreher. The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3_-translational enhancer. Virology, 321:36–46, 2004.CrossRefGoogle Scholar
  61. 854.
    A. McPherson. Macromolecular crystals. Sci. Amer., 260:62–69, 1989.Google Scholar
  62. 855.
    D. A.McQuarrie. Statistical Mechanics. University Science Books, Sausalito, CA, second edition, 2000.Google Scholar
  63. 871.
    S. Miyazawa and R. L. Jernigan. A new substitution matrix for protein se- quence searches based on contact frequencies in protein structures. Prot. Engin., 6:267–278, 1993.CrossRefGoogle Scholar
  64. 878.
    J. L. Morales and J. Nocedal. Automatic preconditioning by limitedmemory quasi- Newton updating. SIAM J. Opt., 10:1079–1096, 2000. (also Technical Report 97/07, Optimization Technology Center, Northwestern University, 1997).Google Scholar
  65. 879.
    J. J. Moré and S. J.Wright. Optimization Software Guide, volume 14 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 1993. See www.mcs.anl.gov/otc/ Guide/ and www.mcs.anl.gov/otc/Guide/SoftwareGuide/ for updated informa- tion on the software guide.Google Scholar
  66. 882.
    J. Moult, K. Fidelis, A. Kryshtafovych, and B. Rost. Critical assessment of meth- ods of protein structure prediction – Round VII. Proteins: Struc. Func. Gen., 69 (Suppl. 8):3–9, 2007.Google Scholar
  67. 898.
    S. Neidle, editor. Oxford Handbook of Nucleic Acid Structure. Oxford University Press, Oxford, England, 1999.Google Scholar
  68. 909.
    P. E. Nielsen. DNA analogues with nonphosphodiester backbones. Ann. Rev. iophys. Biomol. Struc., 24:167–183, 1995.CrossRefGoogle Scholar
  69. 934.
    K. Okada and S. Okada. X-ray crystallographic analysis and semiempirical com- putations. In P. von Ragué Schleyer (Editor-in Chief), N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, and H. F. Schaefer, III, editors, Encyclopedia of Com- putational Chemistry, volume 5, pages 3223–3247. John Wiley & Sons, West Sussex, England, 1998.Google Scholar
  70. 937.
    S. Okumoto, L. L. Looger, K. D. Micheva, R. J. Reimer, S. J. Smith, and W. B. Frommer. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl. Acad. Sci. USA, 102:8740–8745, 2005.CrossRefGoogle Scholar
  71. 972.
    D. J. Patel. A molecular propeller. Nature, 417:807–808, 2002.CrossRefGoogle Scholar
  72. 973.
    D. J. Patel, B. Mao, Z. Gu, B. E. Hingerty, A. Gorin, A. K. Basu, and S. Broyde. uclear magnetic resonance solution structures of covalent aromatic amine-DNA adducts and their magnetic relevance. Chem. Res. Toxic., 11:391–407, 1998.CrossRefGoogle Scholar
  73. 980.
    L. Pauling, R. B. Corey, and H. R. Branson. The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. ci. USA, 37:205–211, 1951.CrossRefGoogle Scholar
  74. 988.
    A. Peracchi. Prospects for antiviral ribozymes and deoxyribozymes. Rev. Med. irol., 14:47–64, 2004.CrossRefGoogle Scholar
  75. 1002.
    D. S. Pilch, G. E. Plum, and K. J. Breslauer. The thermodynamics of DNA structures which contain lesions or guanine tetrads. Curr. Opin. Struct. Biol., 5:334–342, 1995.CrossRefGoogle Scholar
  76. 1010.
    H. W. Pley, K. M. Flaherty, and D. B. McKay. Three-dimensional structure of a hammerhead ribozyme. Nature, 372:68–74, 1994.CrossRefGoogle Scholar
  77. 1016.
    J. A. Pople. Quantum chemical models (Nobel lecture). Angew. Chem. Int. Ed., 38:1894–1902, 1999.CrossRefGoogle Scholar
  78. 1039.
    A. Rahman and F.H. Stillinger. Molecular dynamics study of liquid water. J. Chem. hys., 55:3336–3359, 1971.CrossRefGoogle Scholar
  79. 1068.
    A. Roitberg and R. Elber. Modeling of side chains in peptides and proteins: Appli- cation of the locally enhanced sampling and the simulated annealing methods to find minimum energy conformations. J. Chem. Phys., 95:9277–9287, 1991.CrossRefGoogle Scholar
  80. 1069.
    A. E. Roitberg, A. Okur, and C. Simmerling. Coupling of replica exchange simu- lations to a non-Boltzmann structure reservoir. J. Phys. Chem. B, 111:2415–2418, 2007.CrossRefGoogle Scholar
  81. 1089.
    K. Salehi-Ashtiani, A. Luptk, A. Litovchick, and J.W. Szostak. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. cience, 313:1788–1792, 2006.Google Scholar
  82. 1101.
    J. A. Schellman. The flexibility of DNA. I. Thermal fluctuations. Biophys. Chem., 11:321–328, 1980.Google Scholar
  83. 1102.
    J. A. Schellman and S. C. Harvey. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys. Chem., 55:95–114, 1995.CrossRefGoogle Scholar
  84. 1103.
    J. A. Schellman and C. Schellman. The conformation of polypeptide chains in proteins. In H. Neurath, editor, The Proteins, volume 2, pages 1–137. Academic Press, New York, NY, second edition, 1964.Google Scholar
  85. 1123.
    T. Schlick, E. Barth, and M. Mandziuk. Biomolecular dynamics at long timesteps: Bridging the timescale gap between simulation and experimentation. Ann. Rev. iophys. Biomol. Struc., 26:179–220, 1997.Google Scholar
  86. 1125.
    T. Schlick, S. Figueroa, andM.Mezei. A molecular dynamics simulation of a water droplet by the implicit-Euler/Langevin scheme. J. Chem. Phys., 94:2118–2129, 1991.Google Scholar
  87. 1133.
    T. Schlick and W. K. Olson. Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA. Science, 257:1110–1115, 1992.CrossRefGoogle Scholar
  88. 1152.
    T. Schwartz, M. A. Rould, K. Lowenhaupt, A. Herbert, and A. Rich. Crystal struc- ture of the Z domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science, 284:1841–1845, 1999.CrossRefGoogle Scholar
  89. 1153.
    E. Schwegler and M. Challacombe. Linear scaling computation of the Hartree- Fock exchange matrix. J. Chem. Phys., 105:2726–2734, 1996.CrossRefGoogle Scholar
  90. 1172.
    E.I. Shakhnovich and A.M. Gutin. Implications of thermodynamics on protein folding for evolution of primary sequences. Nature, 346:773–775, 1990.CrossRefGoogle Scholar
  91. 1195.
    T. Simonson. Macromolecular electrostatics: Continuum models and their growing pains. Curr. Opin. Struct. Biol., 11:243–252, 2001.CrossRefGoogle Scholar
  92. 1201.
    Frontiers in chemistry: Single molecules, 1999. Science 283: 1667–1695 (1999), special compendium of articles.Google Scholar
  93. 1206.
    N. B. Slater. Classical motion under a morse potential. Nature, 180:1352–1353, 1957.MATHCrossRefGoogle Scholar
  94. 1215.
    J. T. Sprague, J. C. Tai, Y. Yuh, and N. L. Allinger. The MMP2 calculational method. J. Comput. Chem., 8:581–603, 1987.CrossRefGoogle Scholar
  95. 1330.
    D. M. Walsh, I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl, M. S. Wolfe, M. J. Rowan, and D. J. Selkoe. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416:535–539, 2002.CrossRefGoogle Scholar
  96. 1342.
    eferences [1337] Y. Wang and D. J. Patel. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1:263–282, 1993.Google Scholar
  97. 1344.
    Z. Wang and R. M. Harshey. Crucial role for DNA supercoiling in Mu transposi- tion: A kinetic study. Proc. Natl. Acad. Sci. USA, 91:699–703, 1994.CrossRefGoogle Scholar
  98. 1345.
    Z.-X. Wang. How many fold types of protein are there in Nature? Proteins: Struc. unc. Gen., 26:186–191, 1996.CrossRefGoogle Scholar
  99. 1346.
    A. Warshel. The consistent force field and its quantum mechanical extension. n G. A. Segal, editor, Modern Theoretical Chemistry, volume 7. Plenum Press, New York, NY, 1977.Google Scholar
  100. 1359.
    J. D. Watson and F. H. C. Crick. Genetical implications of the structure of deoxyribonucleic acid. Nature, 171:964–967, 1953.CrossRefGoogle Scholar
  101. 1360.
    J. D. Watson and F. H. C. Crick. A structure for deoxyribose nucleic acid. Nature, 171:737–738, 1953.CrossRefGoogle Scholar
  102. 1411.
    B. I. Yakobson and R. E. Smalley. Fullerene nanotubes: C1,000,000 and beyond. merican Scientist, 85(4):324–337, 1997.Google Scholar
  103. 1420.
    D. M. York, T.-S. Lee, and W. Yang. Quantum-mechanical study of aque- ous polarization effects on biological macromolecules. J. Amer. Chem. Soc., 118:10940–10941, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations