Topics in Nucleic Acids Structure: Noncanonical Helices and RNA Structure

  • Tamar Schlick
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)


This chapter builds upon nucleic acid concepts introduced in the prior two chapters to include a description of alternative hydrogen bonding schemes in nucleic acids, non-canonical helical and hybrid structures, DNA mimics, overstretched and understretched DNA, and RNA structure and folding, including secondary and tertiary-structure RNA modeling.


Hepatitis Delta Virus Hydrogen Bonding Pattern Tertiary Interaction Tertiary Contact Hoogsteen Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    P. L. Adams, M. R. Stahley, A. B. Kosek, J. Wang, and S. A. Strobel. Crystal structure of a self-splicing group I intron with both exons. Nature, 430:45–50, 2005.Google Scholar
  2. 11.
    P. Ahlquist. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296:1270–1273, 2002.Google Scholar
  3. 12.
    J. Aishima, R. K. Gitti, J. E. Noah, H. H. Gan, T. Schlick, and C. Wolberger. A Hoogsteen base pair embedded in undistorted B-DNA. Nuc. Acids Res., 30:5244–5252, 2002.Google Scholar
  4. 13.
    J. Aishima and C.Wolberger. Crystal structure of theMATα2 homeodomain-DNA complex with nonspecifically bound homeodomains. Nuc. Acids Res., 2002.Google Scholar
  5. 21.
    J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette. Stretched and over- wound DNA forms a Pauling like structure with exposed bases. Proc. Natl. Acad. Sci. USA, 95:14152–14157, 1998.Google Scholar
  6. 31.
    C. D. Allis, T. Jenuwein, and D. Reinberg, editors. Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2009.Google Scholar
  7. 33.
    U. Alon. Network motifs: theory and experimental approaches. Nat. Rev. Genet., 8:450–461, 2007.Google Scholar
  8. 50.
    M. Andronescu, V. Bereg, H.H. Hoos, and A. Condon. RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinformatics, 9:340, 2008.Google Scholar
  9. 66.
    K. Ashrafi, F. Y. Chang, J. L. Watts, A. G. Fraser, R. S. Kamath, J. Ahringer, and G. Ruvkun. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 421:268–272, 2003.Google Scholar
  10. 76.
    S. Bagheri and M. Kashani-Sabet. Ribozymes in the age of molecular therapeutics. urr. Mol. Med., 4:489–506, 2004.Google Scholar
  11. 78.
    S.D. Baird, M. Turcotte, R.G. Korneluk, and M. Holcik. Searching for IRES. RNA, 12:1755–1785, 2006.Google Scholar
  12. 82.
    Y Bakhtin and C. E. Heitche. Large deviations of random trees. J. Stat. Phys., 132:551–560, 2008.Google Scholar
  13. 85.
    N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science, 289:905–920, 2000.Google Scholar
  14. 101.
    R. T. Batey and J. A. Doudna. The parallel universe of RNA folding. Nature Struc. iol., 5:337–340, 1998.Google Scholar
  15. 102.
    R. T. Batey, R. P. Rambo, and J. A. Doudna. Tertiary motifs in RNA structure and folding. Angew. Chem. Int. Ed., 38:2326–2343, 1999.Google Scholar
  16. 116.
    G. Benedetti and S. Morosetti. A graph-topological approach to recognition of pattern and similarity in RNA secondary structures. Biophys. Chem., 59:179–184, 1996.Google Scholar
  17. 120.
    D. Bensimon, A. Simon and. A. Chiffaudel, V. Croquette, and A. Bensimon. lignment and sensitive detection of DNA by a moving interface. Science, 265:2096–2098, 1994.Google Scholar
  18. 128.
    H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Res., 28:235–242, 2000.Google Scholar
  19. 139.
    V. A. Bloomfield, D. M. Crothers, and I. Tinoco, Jr. Nucleic Acids: Structures, Properties, and Functions. University Science Press, New York, NY, 2000.Google Scholar
  20. 148.
    M. Bon, G. Vernizzi, H. Orland, and A. Zee. Topological classification of RNA structures. J. Mol. Biol., 379:900–911, 2008.Google Scholar
  21. 166.
    R. R. Breaker. Natural and engineered nucleic acids as tools to explore biology. ature, 432:838–845, 2004.Google Scholar
  22. 169.
    K. J. Breslauer, R. Frank, H. Bl¨ocker, and L. A. Marky. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA, 83:3746–3750, 1986.Google Scholar
  23. 170.
    I. Brierley, S. Pennell, and R.J. Gilbert. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat. Rev. Microbiol., 5:598–610, 2007.Google Scholar
  24. 172.
    P. Brion and E. Westhof. Hierarchy and dynamics of RNA folding. Ann. Rev. iophys. Biomol. Struc., 26:113–137, 1997.Google Scholar
  25. 182.
    Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante. tructural transitions and elasticity from torque measurements on DNA. Nature, 424:338–341, 2003.Google Scholar
  26. 187.
    C. Bustamante. In singulo biochemistry: When less is more. Ann. Rev. Biochem., 77:45–50, 2008.Google Scholar
  27. 188.
    C. Bustamante, Z. Bryant, and S. B. Smith. Ten years of tension: Single-molecule DNA mechanics. Nature, 421:423–427, 2003.Google Scholar
  28. 190.
    C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith. Entropic elasticity of λ-phage DNA. Science, 265:1599–1600, 1994.Google Scholar
  29. 195.
    C. R. Calladine and H. R. Drew. Understanding DNA. The Molecule and How It Works. Academic Press, San Diego, CA, second edition, 1997.Google Scholar
  30. 199.
    J. M. Carothers, S. C. Oestreich, J. H. Davis, and J. W. Szostak. Informa- tional complexity and functional activity of RNA structures. J. Amer. Chem. Soc., 126:5130–5137, 2004.Google Scholar
  31. 200.
    J. C. Carrington and V. Ambros. Role of microRNAs in plant and animal development. Science, 301:336–338, 2003.Google Scholar
  32. 201.
    A. P. Carter, W. M. Clemons, D. E. Brodersen, R. J. Morgan-Warren, B. T. Wimberly, and V. Ramakrishnan. Functional insights from the struc- ture of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 407:340–348, 2000.Google Scholar
  33. 206.
    J. H. Cate,M.M. Yusupov, C. Zh. Yusupova, T. N. Earnest, and H. F. Noller. X-ray crystal structure of 70S ribosome functional complexes. Science, 285:2095–2104, 1999.Google Scholar
  34. 210.
    T. R. Cech. The ribosome is a ribozyme. Science, 289:878–879, 2000.Google Scholar
  35. 211.
    L. Cerchia and V. De Franciscis. Noncoding RNAs in cancer medicine. J. Biomed. iotechnol., 2006:73104, 2006.Google Scholar
  36. 225.
    S.-J. Chen. RNA folding: Conformational statistics, folding kinetics, and ion electrostatics. Ann. Rev. Biphys., 37:197–214, 2008.Google Scholar
  37. 228.
    D. Y. Cherny, B. P. Belotserkovskii, M. D. Frank-Kamenetskii, M. Egholm, O. Buchardt, R. H. Berg, and P. E. Nielsen. DNA unwinding upon strand- displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc. Natl. Acad. Sci. USA, 90:1667–1670, 1993.Google Scholar
  38. 229.
    S. Chew, P. Chen, N. Link, K. Galindo, K. Pogue, and J. Abrams. Genome-wide silencing in Drosophila captures conserved apoptotic effectors. Nature, 460:123– 127, 2009.Google Scholar
  39. 235.
    W. W. Chiu, R. M. Kinney, and T. W. Dreher. Control of translation by the 5_- and 3_-terminal regions of the dengue virus genome. J. Virol., 79:8303–8315, 2005.Google Scholar
  40. 241.
    V. B. Chu and D. Herschlag. Understanding RNA’s secrets: Advances in the biology, physics, and modeling of complex RNAs. Curr. Opin. Struct. Biol., 18:305–314, 2008.Google Scholar
  41. 242.
    A. Chworos, I. Severcan, A. Koyfman, P. Weinkam, E. Oroudjev, H. Hansma, and L. Jaeger. Building programmable jigsaw puzzles with RNA. Science, 306:2068– 2072, 2004.Google Scholar
  42. 250.
    P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay, and F. Caron. NA: An extensible molecule. Science, 271:792–794, 1996.Google Scholar
  43. 267.
    J. Couzin. Small RNAs make big splash. Science, 298:2296–2297, 2002.Google Scholar
  44. 273.
    S. Cronin, N. Nehme, S. Limmer, S. Liegeois, J. Pospisilik, D. Schramek, A. Leibbrandt, R. Simoes, S. Gruber, U. Puc, I. Ebersberger, T. Zoranovic, G. Neely, A. von Haeseler, D. Ferrandon, and J. Penninger. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. cience, 325:340–343, 2009.Google Scholar
  45. 277.
    J. A. Cruz and E. Westhof. The dynamic landscape of RNA architecture. Cell, 136:604–609, 2009.Google Scholar
  46. 289.
    L. A. Day, R. L. Wiseman, and C. J. Marzec. Structure models for DNA in filamentous viruses with phosphates near the center. Nucl. Acids Res., 7:1393–1403, 1979.Google Scholar
  47. 327.
    E. A. Doherty, R. T. Batey, B. Masquida, and J. A. Doudna. A universal mode of helix packing in RNA. Nat. Struc. Biol., 8:339–343, 2001.Google Scholar
  48. 331.
    J. A. Doudna. Ribozymes: The hammerhead swings into action. Curr. Biol., 8:R495–R497, 1998.Google Scholar
  49. 332.
    J. A. Doudna. Structural genomics of RNA. Nature Struc. Biol., 7:954–956, 2000.Google Scholar
  50. 349.
    A. S. Edison. Linus Pauling and the planar peptide bond. Nat. Struc. Biol., 8:201–202, 2001.Google Scholar
  51. 350.
    E. H. Egelman. Does a stretched DNA structure dictate the helical geometry of Rec-A-like filaments? J. Mol. Biol., 309:539–542, 2001.Google Scholar
  52. 351.
    M. Egholm, O. Buchardt, P. E. Nielsen, and R. H. Berg. Peptide nucleic-acids (PNA)—Oligonucletide analogs with an achiral peptide backbone. J. Amer. Chem. oc., 114:1895–1897, 1992.Google Scholar
  53. 359.
    L. O. Elkin. Rosalind Franklin and the double helix. Physics Today, 56:42–48, 2003.Google Scholar
  54. 383.
    M. Feig and B.M. Pettitt. Structural equilibrium of DNA represented with different force fields. Biophys. J., 75:134–149, 1998.Google Scholar
  55. 388.
    M. O. Fenley, W. K. Olson, I. Tobias, and G. S. Manning. Electrostatic effects in short superhelical DNA. Biophys. Chem., 50:255–271, 1994.Google Scholar
  56. 390.
    D. Fera, N. Kim, N. Shiffeldrim, J. Zorn, U. Laserson, N. Kim, and T. Schlick. AG: RNA-As-Graphs web resource. BMC Bioinformatics, 5:88, 2004.Google Scholar
  57. 391.
    P. Ferrara, J. Apostolakis, and A. Caflisch. Targeted molecular dynamics simula- tions of protein unfolding. J. Phys. Chem. B., 104:4511–4518, 2000.Google Scholar
  58. 416.
    N. Foloppe, B. Hartmann, L. Nilsson, and A. D. MacKerell, Jr. Intrinsic con- formational energetics associated with the glycosyl torsion in DNA: A quantum mechanical study. Biophys. J., 82:1554–1569, 2002.Google Scholar
  59. 421.
    J. Frank. How the ribosome works. Sci. Amer., 86:428–439, 1998.Google Scholar
  60. 435.
    E. A. Galburt and B. L. Stoddard. Time-resolved macromolecular crystallography. hys. Today, 54:33–39, 1989.Google Scholar
  61. 438.
    H. H. Gan, R. A. Perlow, S. Roy, J. Ko, M. Wu, J. Huang, S. Yan, A. Nicoletta, J. Vafai, D. Sun, L. Wang, J. E. Noah, S. Pasquali, and T. Schlick. Analysis of protein sequence/structure similarity relationships. Biophys. J., 83:2781–2791, 2002.Google Scholar
  62. 449.
    eferences [447] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. rentice Hall, Englewood Cliffs, New Jersey, 1971.Google Scholar
  63. 450.
    P. Gedeck and P.Willet. Visual and computational analysis of structure-activity re- lationships in high-throughput screening data. Curr. Opin. Chem. Biol., 5:389–395, 2001.Google Scholar
  64. 454.
    N. Ghosh and Q. Cui. pKa of residue 66 in Staphylococal nuclease. I. insights from QM/MM simulations with conventional sampling. J. Phys. Chem., 112: 8387–8397, 2008.Google Scholar
  65. 466.
    S. Goedecker. Linear scaling electronic structure methods. Rev. Mod. Phys., 71:1085–1123, 1999.Google Scholar
  66. 470.
    O. Gonzales and J. C. Simo. On the stability of symplectic and energy-momentum conserving algorithms for nonlinear Hamiltonian systems with symmetry. Comput. eth. App. Mech. Engin., 134:197, 1994.Google Scholar
  67. 471.
    J. A. Gonz´alez and R. Pino. A random number generator based on unpredictable chaotic functions. Comput. Phys. Comm., 120:109–114, 1999.Google Scholar
  68. 488.
    H. Grubm¨uller, H. Heller, A. Windemuth, and K. Schulten. Generalized Verlet al- gorithm for efficient molecular dynamics simulations with long-range interactions. ol. Sim., 6:121–142, 1991.Google Scholar
  69. 493.
    P. J. Hagerman. Flexibility of DNA. Ann. Rev. Biophys. Biophys. Chem., 17: 265–286, 1988.Google Scholar
  70. 503.
    T. A. Halgren and W. Damm. Polarizable force fields. Curr. Opin. Struct. Biol., 11:236–242, 2001.Google Scholar
  71. 533.
    H. A. Hauptman. The phase problem of X-ray crystallography. Phys. Today, 42:24–29, 1989.Google Scholar
  72. 534.
    D. M. Hayes, P.A. Kollman, and S. Rothenberg. A conformational analysis of H3PO4, H3PO4, HPO2 4 and related model compounds. J. Amer. Chem. Soc., 99:2150–2154, 1977.Google Scholar
  73. 538.
    D. J. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler, A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and Michael D. Miller. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. cience, 287:646–650, 2000.Google Scholar
  74. 539.
    C. E. Hecht. Statistical Thermodynamics and Kinetic Theory. W. H. Freeman, New York, NY, 1990.Google Scholar
  75. 542.
    W. A. Hendrickson. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science, 254:51–58, 1991.Google Scholar
  76. 545.
    G. Henkelman and H. J´onsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys., 113:9978–9985, 2000.Google Scholar
  77. 546.
    C. M. Henry. Pharmacogenomics. Chem. Engin. News, 79:37–42, 2001.MathSciNetGoogle Scholar
  78. 558.
    C.-J. H¨ogberg, A.M. Nikitin, and A. P. Lyubartsev. Modification of the CHARMM force field for DMPC lipid bilayer. J. Comput. Chem., 29:2359–2369, 2008.Google Scholar
  79. 569.
    P. J. Horn and C. L. Peterson. Chromatin higher order folding: Wrapping up transcription. Science, 297:1824–1827, 2002.Google Scholar
  80. 599.
    S. Izrailev, A. R. Crofts, E. A. Berry, and K. Schulten. Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc1 complex. Biophys. ., 77:1753–1768, 1999.Google Scholar
  81. 600.
    A. Jack and M. Levitt. Refinement of large structures by simultaneous minimiza- tion of energy and R factor. Acta Crystallogr., A34:931–935, 1978.Google Scholar
  82. 601.
    L. Jaeger and A. Chworos. The architectonics of programmable RNA and dna nanostructures. Curr. Opin. Struct. Biol., 16:531–543, 2006.Google Scholar
  83. 626.
    J. Kaiser. Death prompts a review of gene therapy vector. Science, 317:580, 2007.Google Scholar
  84. 633.
    R. Kanaar and N. R. Cozzarelli. Roles of supercoiled DNA structure in DNA transactions. Curr. Opin. Struc. Bio., 2:369–379, 1992.Google Scholar
  85. 642.
    E. K. Kick, D. C. Roe, A. G. Skillman, G. Liu, T. J. A. Ewing, Y. Sun, I. D. Kuntz, and J. A. Ellman. Structure-based design of combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. Chem. Biol., 4:297–307, 1997.Google Scholar
  86. 643.
    C. L. Kielkopf, S. Ding, P. Kuhn, and D. C. Rees. Conformational flexibility of B-DNA at 0.74 A resolution: d(CCAGTACTGG)2. J. Mol. Biol., 296:787–801, 2000.Google Scholar
  87. 644.
    N. Kim. Exploring RNA Structure Space Using Multidisciplinary Approaches with Applications for Novel RNA Design. PhD thesis, New York University, Department of Chemistry (Program in Computational Biology), New York, NY, May 2009.Google Scholar
  88. 645.
    N. Kim, H. H. Gan, and T. Schlick. Designing structured RNA pools for in vitro selection of RNAs. RNA, 13:478–492, 2007.Google Scholar
  89. 646.
    N. Kim, J. A. Izzo, S. Elmetwaly, H. H. Gan, and T. Schlick. Computational gen- eration and screening of RNA motifs in large sequence pools. Nucl. Acids Res., 2010. doi: 10.1093/nar/gkq282.Google Scholar
  90. 654.
    J. B. Klauda, B. R. Brooks, Jr. A. D. MacKerell, R. M. Venable, and R. W. Pastor. n ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J. Phys. Chem. B, 109:5300–5311, 2005.Google Scholar
  91. 662.
    eferences [660] D. K. Klimov and D. Thirumalai. Stretching single-domain proteins: Phase di- agram and kinetics of force-induced unfolding. Proc. Natl. Acad. Sci. USA, 96:6166–6170, 1999.Google Scholar
  92. 671.
    Y. Kong, Y. Shen, T. E. Warth, and J. Ma. Conformational pathways in the gat- ing of Escherichia coli mechanosensitive channel. Proc. Natl. Acad. Sci. USA, 99: 5999–6004, 2002.Google Scholar
  93. 678.
    A. Korostelev, R. Bertram, and M. S. Chapman. Simulated-annealing real-space refinement as a tool in model building. Acta Cryst., D58:761–767, 2002.Google Scholar
  94. 682.
    R. Z. Kramer, J. Bella, B. Brodsky, and H. M. Berman. The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence. J. Mol. iol., 311:131–147, 2001.Google Scholar
  95. 689.
    P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, and W. A. endrickson. Structure of an HIV gp 120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 393:648–659, 1998.Google Scholar
  96. 690.
    L. J. LaBerge and J. C. Tully. A rigorous procedure for combining molecular dynamics and Monte Carlo simulation algorithms. Chem. Phys., 260:183–191, 2000.Google Scholar
  97. 691.
    A. Laederach. Informatics challenges in structured RNAs. Brief. Bioinf., 8:294–303, 2007.Google Scholar
  98. 702.
    B. A. Larder and D. K. Stammers. Closing in on HIV drug resistance. Nature Struc. iol., 6:103–106, 1999.Google Scholar
  99. 703.
    A. Larshminarayanan and V. Sasisekharan. Stereochemistry of nucleic acids and polynucleotides. IV. Conformational energy of base-sugar units. Biopolymers, 8:475–488, 1969.Google Scholar
  100. 704.
    U. Laserson, H. H. Gan, and T. Schlick. Searching for 2D RNA geometries in bacterial genomes. In Proceedings of the Twentieth Annual ACM Symposium on Computational Geometry, pages 373–377, New York, 2004. ACM Press.Google Scholar
  101. 708.
    A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill Series in Industrial Engineering and Management Science. McGraw-Hill, Boston, MA, third edition, 2000.Google Scholar
  102. 711.
    A. M. Leach. Molecular Modelling. Principles and Applications. Pearson Educa- tion Limited, Harlow, England, second edition, 2001.Google Scholar
  103. 712.
    J. LeBarron, R. A. Grassucci, T. R. Shaikh,W. T. Baxter, J. Sengupta, and J. Frank. xploration of parameters in cryo-RM leading to an improved density map of the e. coli ribosome. J. Struc. Biol., 0:0–0, 2008.Google Scholar
  104. 724.
    P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw., 33, 2007.Google Scholar
  105. 725.
    B. Lee and F. M. Richards. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol., 55:379–400, 1971.Google Scholar
  106. 735.
    B. Leimkuhler and R. D. Skeel. Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys., 112:117–125, 1994.MathSciNetMATHGoogle Scholar
  107. 736.
    D. A. Leonard, N. Rajaram, and T. K. Kerppola. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun. Proc. Natl. Acad. Sci. USA, 94:4913–4918, 1997.Google Scholar
  108. 737.
    N. B. Leontis, R. B. Altman, H. M. Berman, S. E. Brenner, J. W. Brown, D. R. ngelke, S. C. Harvey, S. R. Holbrook, F. Jossinet, S. E. Lewis, F. Major, D. H. athews, J. Richardson, J. R. Williamson, and E. Westhof. The RNA Ontology Consortium: An open invitation to the RNA community. RNA, 12:533–541, 2006.Google Scholar
  109. 738.
    N. B. Leontis, A. Lescoute, and E. Westhof. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol., 16:279–287, 2006.Google Scholar
  110. 739.
    N. B. Leontis and E. Westhof. Conserved geometrical base-pairing patterns in RNA. Quart. Rev. Biophys., 31:399–455, 1998.Google Scholar
  111. 740.
    N. B. Leontis and E. Westhof. Geometric nomenclature and classification of RNA base pairs. RNA, 7:499–512, 2001.Google Scholar
  112. 757.
    J. P. Lewis, P. Ordej´on, and O. F. Sankey. An electronic structure based molec- ular dynamics for large biomolecular systems: Applications to the 10 basepair Poly(dG)*Poly(dC) DNA double helix. Phys. Rev. B, 55:6880–6887, 1997.Google Scholar
  113. 759.
    H. Li, W. X. Li, and S. W. Ding. Induction and suppression of RNA silencing by an animal virus. Science, 296:1319–1321, 2002.Google Scholar
  114. 761.
    P. T. X. Li, J. Vieregg, and I. Tinoco, Jr. How RNA unfolds and refolds. Ann. Rev. iochem., 77:77–100, 2008.Google Scholar
  115. 771.
    P. Lin, L. C. Pedersen, V. K. Batra,W. A. Beard, S. H.Wilson, and L. G. Pedersen. nergy analysis of chemistry for correct insertion by DNA polymerase β. Proc. atl. Acad. Sci. USA, 103:13294–13299, 2006.Google Scholar
  116. 775.
    K. B. Lipkowitz. Abuses of molecular mechanics. Pitfalls to avoid. J. Chem. Educ., 72:1070–1075, 1995.Google Scholar
  117. 784.
    O. Llorca, E. A. McCormack, G. Hynes, J. Grantham, J. Cordell, J. L. Carrascosa, K. R.Willison, J. J. Fernandez, and J. M. Valpuesta. Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature, 402:693–696, 1999.Google Scholar
  118. 801.
    M. W. MacArthur and J. M. Thornton. Deviations from planarity of the peptide bond in peptides and proteins. J. Mol. Biol., 264:1180–1195, 1996.Google Scholar
  119. 819.
    W. Makalowski. Not junk after all. Science, 300:1246–1247, 2003.Google Scholar
  120. 838.
    G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein. Explicit reversible integrators for extended systems dynamics. Mol. Phys., 87:1117–1157, 1996.Google Scholar
  121. 839.
    M. Mascagni. Some methods of parallel pseudorandom number generation. In M. T. Heath, A. Ranade, and R S. Schreiber, editors, Algorithms for Parallel Pro- cessing, volume 105 of IMA Volumes in Mathematics and Its Applications, pages 277–288. Springer-Verlag, New York, NY, 1999.Google Scholar
  122. 840.
    D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner. Expanded sequence de- pendence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol., 288:911–940, 1999.Google Scholar
  123. 863.
    L. Mirny and E. Shakhnovich. Protein folding theory: From lattice to all-atom models. Ann. Rev. Biophys. Biomol. Struc., 30:361–396, 2001.Google Scholar
  124. 864.
    R.A. Miron and K. A. Fichthorn. Accelerated molecular dynamics with the bond- boost method. J. Chem. Phys., 119:6210–6216, 2003.Google Scholar
  125. 872.
    K. Moffat. Time-resolved biochemical crystallography: A mechanistic perspective. hem. Rev., 101:1569–1581, 2001.Google Scholar
  126. 873.
    F. A. Momany, R. F. McGuire, A.W. Burgess, and H. A. Scheraga. Energy param- eters in polyeptides. VII. Geometric parameters partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem., 79:2361–2381, 1975.Google Scholar
  127. 875.
    R. Montangue and R. Batey. Riboswitches: Emerging themes in RNA structure and function. Annu. Rev. Biophys., 37:117–133, 2008.Google Scholar
  128. 886.
    F. M¨uhlbacher, H. Schiessel, and C. Holm. Tail-induced attraction between nucleosome core particles. Phys. Rev. E, 74:031919, 2006.Google Scholar
  129. 889.
    J. B. Murray, D. P. Terwey, L. Maloney, A. Karpeisky, N. Usman, L. Beigelman, andW.G. Scott. The structural basis for hammerhead ribozyme self-cleavage. Cell, 92:665–673, 1998.Google Scholar
  130. 893.
    L. Naldini. A comeback for gene therapy. Science, 326:805–806, 2009.Google Scholar
  131. 900.
    G. Némethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini, A. Zagari, S. Rumsey, and H. A. Scheraga. Energy parameters in polypeptides. 10. im- proved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J. Phys. Chem., 96:6472–6484, 1992.Google Scholar
  132. 901.
    G. Némethy, M. S. Pottle, and H. A. Scheraga. Energy parameters in polypeptides.Google Scholar
  133. 902.
    Updating of geometrical parameters, nonbonded interactions, and hydro- gen bond interactions for the naturally occurring amino acids. J. Phys. Chem., 87:1883–1887, 1983.Google Scholar
  134. 905.
    K.L. Ng and S.K. Mishra. De novo SVM classification of precursor microR- NAs from genomic pseudo hairpins using global and intrinsic folding measures. ioinformatics, 23:1321–1330, 2007.Google Scholar
  135. 906.
    eferences [902] S. Ng Kwang Loong and S.K. Mishra. Unique folding of precursor microR- NAs: quantitative evidence and implications for de novo identification. RNA, 13:170–187, 2007.Google Scholar
  136. 907.
    A. Nicholls and B. Honig. A rapid finite difference algorithm, utilizing succes- sive over-relaxation to solve the Poisson-Boltzmann equation. J. Comput. Chem., 12:435–445, 1991.Google Scholar
  137. 910.
    P. E. Nielsen. A new molecule of life. Sci. Amer., 299:64–71, 2008.Google Scholar
  138. 911.
    P. E. Nielsen, M. Egholm, R. H.. Berg, and O. Buchardt. Sequence-selective recog- nition of DNA by strand displacement with a thymine-substituted polyamide. cience, 254:1497–1500, 1991.Google Scholar
  139. 922.
    J. Nocedal and S. Wright. Numerical Optimization. Springer Verlag, New York, NY, 1999.Google Scholar
  140. 926.
    H. F. Noller. RNA structure: Reading the ribosome. Science, 309:1508–1514, 2005.Google Scholar
  141. 961.
    A. C. Pan and B. Roux. BuildingMarkov statemodels along pathways to determine free energies and rates of transitions. J. Chem. Phys., 129:064107, 2008.Google Scholar
  142. 965.
    G. N. Parkinson, M. P. H. Lee, and S. Neidle. Crystal structure of parallel quadruplexes from human telemeric DNA. Nature, 417:876–880, 2002.Google Scholar
  143. 968.
    M. Parrinello and A. Rahman. Crystal structure and pair potentials: A molecular- dynamics study. Phys. Rev. Lett., 45:1196–1199, 1980.Google Scholar
  144. 971.
    R.W. Pastor, B. R. Brooks, and A. Szabo. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 65:1409–1419, 1988.Google Scholar
  145. 975.
    G. A. Patikoglou, J. L. Kim, L. Sun, S.-H. Yang, T. Kodadek, and S. K. Burley. ATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes & Devt., 13:3217–3230, 1999.Google Scholar
  146. 981.
    L. Pauling, H. A. Itano, S. J. Singer, and I. C.Wells. Sickle cell anemia, a molecular disease. Science, 110:543–548, 1949.Google Scholar
  147. 982.
    L. Pauling and E. B. Wilson, Jr. Introduction to Quantum Mechanics with Applications to Chemistry. Dover, New York, NY, 1985.Google Scholar
  148. 984.
    D. A. Pearlman and S. H. Kim. Determinations of atomic partial charges for nucleic acid constituents from x-ray diffraction data. I. 2’-deoxycytidine-5’- monophosphate. Biopolymers, 24:327–357, 1985.Google Scholar
  149. 990.
    O. E. Percus and J. K. Percus. Intrinsic relations in the structure of linear congruential generators modulo 2β. Stat. Prob. Let., 15:381–383, 1992.MathSciNetMATHGoogle Scholar
  150. 998.
    G. A. Petsko and D. Ringe. Observation of unstable species in enzyme-catalyzed transformations using protein crystallography. Curr. Opin. Chem. Biol., 4:89–94, 2000.Google Scholar
  151. 1004.
    J. Pillardy, C. Czaplewiski, A. Liwo, J. Lee, D. R. Ripoll, R. Ka´zmierkiewicz, S. Oldziej,W. J.Wedemeyer, K. D. Gibson, Y. A. Arnautova, J. Saunders, Y.-J. Ye, and H. A. Scheraga. Recent improvements in prediction of protein structure by global optimization of a potential energy function. Proc. Natl. Acad. Sci. USA, 98:2329–2333, 2001.Google Scholar
  152. 1005.
    T. Pinou, T. Schlick, B. Li, and H. G. Dowling. Addition of Darwin’s third dimension to phylectic trees. J. Theor. Biol., 182:505–512, 1996.Google Scholar
  153. 1007.
    M. Pizza, V. Scarlato, V. Masignani, M. M. Giuliani, B. Aric´o, M. Comanducci, G. T. Jennings, L. Baldi, E. Bartolini, B. Capecchi, C. L. Galeotti, E. Luzzi,Google Scholar
  154. 1008.
    eferences R. Manetti, E. Marchetti, M. Mora, S. Nuti, G. Ratti, L. Santini, S. Savino, M. Scarselli, E. Storni, P. Zuo, M. Broeker, E. Hundt, B. Knapp, E. Blair, T. Mason, H. Tettelin, D. W. Hood, A. C. Jeffries, N. J. Saunders, D. M. Granoff, J. C. enter, E. R. Moxon, G. Grandi, and R. Rappuoli. Identification of vaccine candi- dates against serogroup B meningococcus by whole-genome sequencing. Science, 287:1816–1820, 2000.Google Scholar
  155. 1018.
    M. Prabhakaran, S. C. Harvey, B.Mao, and J. A. McCammon. Molecular dynamics of phenylanlanine transfer RNA. J. Biomol. Struct. Dynam., 1:357–369, 1983.Google Scholar
  156. 1022.
    M. A. Price and T. D. Tullius. How the structure of an adenine tract depends on sequence context: A new model for the structure of TnAn DNA sequences. iochemistry, 32:127–136, 1993.Google Scholar
  157. 1028.
    H. Qian and J. A. Schellman. Transformed Poisson-Boltzmann relations and ionic distributions. J. Phys. Chem. B, 104:11528–11540, 2000.Google Scholar
  158. 1041.
    eferences [1036] G. Ramachandran and T. Schlick. Solvent effects on supercoiled DNA dynamics explored by Langevin dynamics simulations. Phys. Rev. E, 51:6188–6203, 1995.Google Scholar
  159. 1042.
    G. Ramachandran and T. Schlick. Beyond optimization: Simulating the dynam- ics of supercoiled DNA by a macroscopic model. In P. M. Pardalos, D. Shalloway, and G. Xue, editors, Global Minimization of Nonconvex Energy Functions: Molec- ular Conformation and Protein Folding, volume 23 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 215–231, Providence, Rhode Island, 1996. American Mathematical Society.Google Scholar
  160. 1049.
    P. R. Reilly. Abraham Lincoln’s DNA and Other Adventures in Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000.Google Scholar
  161. 1050.
    J. Ren, R. M. Esnouf, A. L. Hopkins, E. Y. Jones, I. Kirby, J. Keeling, C. K. oss, B.A. Larder, D. I. Stuart, and D. K. Stammers. 3_-Azido-3_-deoxythymidine drug resistance mutations in HIV-1 reverse transcriptase can induce long range conformational changes resistance. Proc. Natl. Acad. Sci. USA, 95:9518–9523, 1998.Google Scholar
  162. 1080.
    M. Rueda, P. Chacon, andM. Orozco. Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. Structure, 15:565–575, 2007.Google Scholar
  163. 1084.
    J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 23:327–341, 1977.Google Scholar
  164. 1112.
    T. Schlick. Pursuing Laplace’s vision on modern computers. In J. P. Mesirov, K. Schulten, and D. W. Sumners, editors, Mathematical Applications to Biomo- lecular Structure and Dynamics, volume 82 of IMA Volumes in Mathematics and Its Applications, pages 219–247, New York, NY, 1996. Springer-Verlag.Google Scholar
  165. 1113.
    T. Schlick. Geometry optimization. In P. von Ragué Schleyer (Editor-in Chief), N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, and H. F. Schaefer, III, edi- tors, Encyclopedia of Computational Chemistry, volume 2, pages 1136–1157. John Wiley & Sons, West Sussex, England, 1998.Google Scholar
  166. 1115.
    T. Schlick. Time-trimming tricks for dynamic simulations: Splitting force updates to reduce computational work. Structure, 9:R45–R53, 2001.Google Scholar
  167. 1135.
    T. Schlick and M. L. Overton. A powerful truncated Newton method for potential energy functions. J. Comput. Chem., 8:1025–1039, 1987.MathSciNetGoogle Scholar
  168. 1142.
    R. B. Schnabel and T. Chow. Tensor methods for unconstrained optimization. IAM J. Opt., 1:293–315, 1991.MathSciNetMATHGoogle Scholar
  169. 1145.
    B. Schneider, D. M. Cohen, L. Schleifer, A. R. Srinivasan, W. K. Olson, and H. M. Berman. A systematic method for studying the spatial distribution of water molecules around nucleic acid bases. Biophys. J., 65:2291–2303, 1993.Google Scholar
  170. 1149.
    J. M. Schurr, H. P. Babcock, and J. A. Gebe. Effect of anisotropy of the bend- ing rigidity on the supercoiling free energy of small circular DNAs. Biopolymers, 36:633–641, 1995.Google Scholar
  171. 1154.
    B. Sclavi, M. Sullivan, M. R. Chance, M. Brenowitz, and S. A. Woodson. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. cience, 279:1940–1943, 1998.Google Scholar
  172. 1160.
    N. Seeman. DNA in a material world. Nature, 421:427–431, 2003.MathSciNetGoogle Scholar
  173. 1161.
    N. C. Seeman. DNA nanotechnology: Novel DNA constructions. Annu. Rev. iophys. Biomol. Struc., 27:225–248, 1998.Google Scholar
  174. 1166.
    S. Sen and L. Nilsson. Molecular dynamics of duplex systems involving PNA: Structural and dynamical consequences of nucleic acid backbone. J. Amer. Chem. oc., 120:619–631, 1998.Google Scholar
  175. 1173.
    D. F. Shanno and K. H. Phua. Remark on Algorithm 500: Minimization of unconstrained multivariate functions. ACM Trans. Math. Softw., 6:618–622, 1980.Google Scholar
  176. 1181.
    J. Shimada, H. Kaneko, and T. Takada. Performance of fast multipole methods for calculating electrostatic interactions in biomolecular simulations. J. Comput. hem., 15:28–43, 1994.Google Scholar
  177. 1183.
    I. A. Shkel, O. V. Tsodikov, and M. T. Record, Jr. Complete asymptotic solu- tion of cylindrical and spherical Poisson-Boltzmann equations at experimental salt concentrations. J. Phys. Chem. B, 104:5161–5170, 2000.Google Scholar
  178. 1191.
    J. C. Simo and N. Tarnow. The discrete energy-momentum method. Conserv- ing algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys., 43:757–793, 1992.MathSciNetMATHGoogle Scholar
  179. 1196.
    R. R. Sinden. DNA Structure and Function. Academic Press, San Diego, CA, 1994.Google Scholar
  180. 1203.
    eferences [1198] R. D. Skeel, I. Tezcan, and D. J. Hardy. Multiple grid methods for classical molecular dynamics. J. Comput. Chem., 23:673–684, 2002.Google Scholar
  181. 1207.
    R. H. Smith. Nanotechnology gains momentum. Mod. Drug Dis., 4:33–38, 2001.Google Scholar
  182. 1208.
    S. B. Smith, Y. Cui, and C. Bustamante. Overstretching B-DNA: The elas- tic response of individual double-stranded and single-stranded DNA molecules. cience, 271:795–798, 1996.Google Scholar
  183. 1216.
    D. Sprous and S. C. Harvey. Action at a distance in supercoiled DNA: Effects of sequences on slither, branching and intermolecular concentration. Biophys. J., 70:1893–1908, 1996.Google Scholar
  184. 1225.
    P. J. Steinbach and B. R. Brooks. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem., 15:667–683, 1994.Google Scholar
  185. 1228.
    D. Stigter. Interactions of highly charged colloidal cylinders with applications to double-stranded DNA. Biopolymers, 16:1435–1448, 1977.Google Scholar
  186. 1233.
    G. Storz. An expanding universe of noncoding RNAs. Science, 296:1260–1263, 2002.Google Scholar
  187. 1245.
    J. Sun, Q. Zhang, and T. Schlick. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation. Proc. Natl. Acad. Sci. USA, 102:8180— 8185, 2005.Google Scholar
  188. 1251.
    J. C. Tai and N. L. Allinger. Effect of inclusion of electron correlation in MM3 studies of cyclic conjugated compounds. J. Comput. Chem., 19:475–487, 1998.Google Scholar
  189. 1261.
    M. C. Tesi, E. J. Janse van Rensburg, E. Orlandini, D. W. Sumners, and S. G. hittington. Knotting and supercoiling in circular DNA: A model incorporating the effect of added salt. Phys. Rev. E, 49:868–872, 1994.Google Scholar
  190. 1266.
    I. Tinoco, Jr. and C. Bustamante. How RNA folds. J. Mol. Biol., 293:271–281, 1999.Google Scholar
  191. 1268.
    D. J. Tobias. Electrostatic calculations: Recent methodological advances and applications to membranes. Curr. Opin. Struct. Biol., 11:253–261, 2001.Google Scholar
  192. 1275.
    T. L. Trapane and E. E. Lattman. Seventh meeting on the critical assessment of techniques for protein structure prediction. Proteins: Struc. Func. Gen., 69 (Suppl. 8):1–2, 2007.Google Scholar
  193. 1281.
    M. E. Tuckerman and B. J. Berne. Molecular dynamics in systems with multiple time scales: Systems with stiff and soft degrees of freedom and with short and long range forces. J. Comput. Chem., 95:8362–8364, 1992.Google Scholar
  194. 1282.
    M. E. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics. J. Chem. Phys., 97:1990–2001, 1992.Google Scholar
  195. 1290.
    N. B. Ulyanov and V. B. Zhurkin. Sequence-dependent anisotropic flexibility of B-DNA: A conformational study. J. Biomol. Struct. Dynam., 2:361–385, 1984.Google Scholar
  196. 1319.
    Y. N. Vorobjev and J. Hermans. ES/IS: Estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model. Biophys. Chem., 78:195–205, 1999.Google Scholar
  197. 1320.
    A. F. Voter. A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys., 106, 1997.Google Scholar
  198. 1324.
    J. ˇSponer and N. ˇSpaˇckov´a. Molecular dynamics simulations and their application to four-stranded DNA. Methods, 43:278–290, 2007.Google Scholar
  199. 1337.
    J.-C. Wang, S. Pal, and K. A. Fichthorn. Accelerated molecular dynamics of rare events using the local boost method. Phys. Rev. B, 63:085403, 2001.Google Scholar
  200. 1350.
    A. Warshel, M. Levitt, and S. Lifson. Consistent force field for calculations of vibrational spectra, and conformations of some amides and lactam rings. J. Mol. pect., 33:84–89, 1970.Google Scholar
  201. 1365.
    F. Weinhold. A new twist on molecular shape. Nature, 411:539–541, 2001.Google Scholar
  202. 1367.
    B. G. Wensley, S. Batey, F. A. Bone, Z. M. Chan, N. R. Tumelty, A. Steward, L. G. Kwa, A. Borgia, and J. Clarke. Experimental evidence for a frustrated energy landscape in a three-helix-bundle protein family. Nature, 463:685–688, 2010.Google Scholar
  203. 1374.
    J. H. White. Self-linking and the Gauss integral in higher dimensions. Amer. J. ath., 91:693–728, 1969.MATHGoogle Scholar
  204. 1379.
    eferences [1374] J. R. Williamson. Small subunit, big science. Nature, 407:306–307, 2000.Google Scholar
  205. 1381.
    E. K. Wilson. Computers customize combinatorial libraries. Chem. Eng. News, 76:31–37, 1998.Google Scholar
  206. 1383.
    M. Wilson, J. DeRisi, H. H. Kristensen, P. Imboden, S. Rane, P. O. Brown, and G. K. Schoolnik. Exploring drug-induced alterations in gene expression in My- cobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA, 96:12833–12838, 1999.Google Scholar
  207. 1403.
    D. Xie and T. Schlick. Remark on the updated truncated Newton minimization package, Algorithm 702. ACM Trans. Math. Softw., 25(1):108–122, 1999.MathSciNetMATHGoogle Scholar
  208. 1427.
    M. A. Young, J. Srinivasan, I. Goljer, S. Kumar, D. L. Beveridge, and P. H. olton. Structure determination and analysis of local bending in an A-tract DNA duplex: Comparison of results from crystallography, nuclear magnetic reso- nance, and molecular dynamics simulation on d(CGCAAAAATGCG). Methods in Enzymology, 261:121–144, 1995.Google Scholar
  209. 1431.
    M.-R. Yun, R. Lavery, N.Mousseau, K. Zakrzewska, and P. Derreumaux. ARTIST: an activated method in internal coordinate space for sampling protein energy landscapes. Proteins, 63:967–975, 2006.Google Scholar
  210. 1432.
    M. M. Yusupov, G. Zh. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H. D. Cate, and H. F. Noller. Crystal structure of the ribosome at 5.5 A resolution. cience, 292:883–896, 2001.Google Scholar
  211. 1452.
    J. Z. Zhou. Structure-directed combinatorial library design. Curr. Opin. Chem. iol., 12:379–385, 2008.Google Scholar
  212. 1453.
    R. Zhou and B. J. Berne. A new molecular dynamics method combining the ref- erence system propagator algorithm with a fast multipole method for simulating proteins and other complex systems. J. Chem. Phys., 103:9444–9459, 1995.Google Scholar
  213. 1460.
    V. B. Zhurkin, N. B. Ulyanov, A. A. Gorin, and R. L. Jernigan. Static and statistical bending of DNA evaluated by Monte Carlo simulations. Proc. Natl. Acad. Sci. SA, 88:7046–7050, 1991.Google Scholar
  214. 1461.
    B. H. Zimm. Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys., 24:269–278, 1956.MathSciNetGoogle Scholar
  215. 1463.
    G. Zou, R. D. Skeel, and S. Subramanian. Biased Brownian dynamics for rate constant calculation. Biophys. J., 79:638–645, 2000.Google Scholar
  216. 1465.
    M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl. Acids Res., 9:133–148, 1981.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations