Topics in Nucleic Acids Structure: DNA Interactions and Folding

Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)


This chapter introduces further topics in nucleic acid structure, building upon the minitutorial of the previous chapter. These topics include DNA sequence effects, DNA hydration, DNA/protein interactions, and the cellular organization of DNA, including supercoiling and chromatin structure. The next chapter expands upon the related topics of alternative hydrogen bonding schemes, non-canonical helical and hybrid structures, DNA mimics, overstretched and understretched DNA, and RNA structure and folding.


Minor Groove Persistence Length Major Groove Chromatin Fiber Linker Histone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 17.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell. Garland Science Publishing, New York, NY, fifth edition, 2008.Google Scholar
  2. 40.
    M. Amos. Theoretical and Experimental DNA Computation. Natural Computing Series. Springer, New York, NY, 2005.Google Scholar
  3. 55.
    G. Arents, R. W. Burlingame, B. C. Wang, W. E. Love, and E. N. Moudrianakis. he nucleosomal core histone octamer at 3.1 A resolution: A tripartite protein as- sembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA, 88:10148–10152, 1991.Google Scholar
  4. 62.
    G. Arya and T. Schlick. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc. Natl. Acad. Sci. USA, 103:16236–16241, 2006.Google Scholar
  5. 63.
    G. Arya and T. Schlick. Efficient global biopolymer sampling with end-transfer configurational bias Monte Carlo. J. Chem. Phys., 106:044107, 2007.Google Scholar
  6. 64.
    G. Arya and T. Schlick. A tale of tails: How histone tails mediate chromatin compaction in different salt and linker histone environments. J. Phys. Chem. A, 113:4045–4059, 2009.Google Scholar
  7. 65.
    G. Arya, Q. Zhang, and T. Schlick. Flexible histone tails in a new mesoscopic oligonucleosome model. Biophys. J., 91:133–150, 2006.Google Scholar
  8. 69.
    P. Auffinger, S. Louise-May, and E. Westhof. Multiple molecular dynamics sim- ulations of the anticodon loop of rRNAAsp in aqueous solution with counterions. . Amer. Chem. Soc., 117:6720–6726, 1995.Google Scholar
  9. 70.
    P. Auffinger, S. Louise-May, and E. Westhof. Molecular dynamics simulations of the anticodon hairpin of tRNAAsp. Structuring effects of C–H· · ·O hydrogen bonds and long-range hydration forces. J. Amer. Chem. Soc., 118:1181–1189, 1996.Google Scholar
  10. 72.
    P. Auffinger and E. Westhof. Simulations of the molecular dynamics of nucleic acids. Curr. Opin. Struct. Biol., 8:227–236, 1998.Google Scholar
  11. 73.
    P. Auffinger and E. Westhof. RNA solvation: A molecular dynamics simulation perspective. Biopolymers, 56:266–274, 2001.Google Scholar
  12. 74.
    M. S. Babcock and W. K. Olson. The effect of mathematics and coordinate system on comparability and “dependencies” of nucleic acid structure parameters. J. Mol. iol., 237:98–124, 1994.Google Scholar
  13. 88.
    Y. Bao, C. L. White, and K. Luger. Nucleosome core particles containing a poly(dAdT) sequence element exhibit a locally distorted DNA structure. J. Mol. iol., 361:617–624, 2006.Google Scholar
  14. 100.
    A. D. Bates and A. Maxwell. DNA Topology. In Focus. Oxford University Press, New York, NY, 1993.Google Scholar
  15. 103.
    W. R. Bauer and C. J. Benham. The free energy, enthalpy, and entropy of native and of partially denatured closed circular DNA. J. Mol. Biol., 234:1184–1196, 1993.Google Scholar
  16. 104.
    C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante. Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. USA, 94:6185–6190, 1997.Google Scholar
  17. 107.
    D. Beard and T. Schlick. Inertial stochastic dynamics: II. influence of inertia on slow kinetic properties of supercoiled DNA. J. Chem. Phys., 112:7323–7338, 2000.Google Scholar
  18. 108.
    D. Beard and T. Schlick. Computational modeling predicts the structure and dynamics of the chromatin fiber. Structure, 9:105–114, 2001.Google Scholar
  19. 109.
    D. Beard and T. Schlick. Modeling salt-mediated electrostatics of macromolecules: The algorithm DiSCO (Discrete Charge Surface Charge Optimization) and its application to the nucleosome. Biopolymers, 58:106–115, 2001.MATHGoogle Scholar
  20. 117.
    Y. Benenson, B. Gil, U. B.-D., R. Adar, and E. Shapiro. An autonomous molecular computer for logical control of gene expression. Nature, 429:423–429, 2004.Google Scholar
  21. 118.
    H. A. Benjamin and N. R. Cozzarelli. DNA-directed synapsis in recombination: Slithering and random collision of sites. Proc. R. A. Welch Found. Conf. Chem. es., 29:107–126, 1986.Google Scholar
  22. 119.
    K. R. Benjamin, A. P. Abola, R. Kanaar, and N. R. Cozzarelli. Contributions of su- percoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. J. Mol. iol., 256:50–65, 1996.Google Scholar
  23. 125.
    H. M. Berman. Hydration of DNA: Take 2. Curr. Opin. Struct. Biol., 4:345–350, 1994.Google Scholar
  24. 126.
    H. M. Berman. Crystal studies of B-DNA: The answers and the questions. iopolymers, 44:23–44, 1997.Google Scholar
  25. 128.
    H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Res., 28:235–242, 2000.Google Scholar
  26. 133.
    eferences [133] D. L. Beveridge, G. Barreiro, K. S. Byun, D. A. Case, T. E. Cheatham, III, S. B. Dixit, E. Giudice, F. Lankas, R. Lavery, J. H. Maddocks, R. Osman, E. Seibert, H. Sklenar, G. Stoll, K. M. Thayer, P. Varnai, and M. A. Young. Molec- ular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I: Research design and results on d(CpG) steps. Biophys. J., 87:3799–3813, 2004.Google Scholar
  27. 137.
    G. M. Blackburn and M. J. Gait, editors. Nucleic Acids in Chemistry and Biology. xford University Press, New York, NY, 1990.Google Scholar
  28. 138.
    V. A. Bloomfield. DNA condensation by multivalent cations. Biopolymers, 44:269–282, 1997.Google Scholar
  29. 139.
    V. A. Bloomfield, D. M. Crothers, and I. Tinoco, Jr. Nucleic Acids: Structures, Properties, and Functions. University Science Press, New York, NY, 2000.Google Scholar
  30. 145.
    T. C. Boles, J. H. White, and N. R. Cozzarelli. Structure of plectonemically supercoiled DNA. J. Mol. Biol., 213:931–951, 1990.Google Scholar
  31. 162.
    R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adleman. olution of a 20-variable 3-SAT problem on a DNA computer. Science, 296:499–502, 2002.Google Scholar
  32. 163.
    C. Branden and J. Tooze. Introduction to Protein Structure. Garland Publishing Inc., New York, NY, second edition, 1999. ( Scholar
  33. 172.
    P. Brion and E. Westhof. Hierarchy and dynamics of RNA folding. Ann. Rev. iophys. Biomol. Struc., 26:113–137, 1997.Google Scholar
  34. 175.
    B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., 4:187–217, 1983.Google Scholar
  35. 182.
    Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante. tructural transitions and elasticity from torque measurements on DNA. Nature, 424:338–341, 2003.Google Scholar
  36. 186.
    A. M. Burkhoff and T. D. Tullius. The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell, 48:935–943, 1987.Google Scholar
  37. 195.
    C. R. Calladine and H. R. Drew. Understanding DNA. The Molecule and How It Works. Academic Press, San Diego, CA, second edition, 1997.Google Scholar
  38. 203.
    D. A. Case. NMR refinement. In P. von Ragué Schleyer (Editor-in Chief), N. L. llinger, T. Clark, J. Gasteiger, P. A. Kollman, and H. F. Schaefer, III, editors, En- cyclopedia of Computational Chemistry, volume 3, pages 1866–1876. John Wiley & Sons, West Sussex, England, 1998.Google Scholar
  39. 216.
    T. E. Cheatham, III. Simulation and modeling of nucleic acid structure, dynamics and interactions. Curr. Opin. Struct. Biol., 14:360–367, 2004.Google Scholar
  40. 225.
    S.-J. Chen. RNA folding: Conformational statistics, folding kinetics, and ion electrostatics. Ann. Rev. Biphys., 37:197–214, 2008.Google Scholar
  41. 230.
    D. N. Chin, F. Sussman, H.M. Chun, and R. Czerminski. A simple solvation model along with a multibody dynamics strategy MBO(N)D produces stable DNA sim- ulations that are faster than traditional atomistic methods. Mol. Sim., 24:449–463, 2000.Google Scholar
  42. 231.
    G. Chirico and J. Langowski. Calculating hydrodynamic properties of DNA through a second-order Brownian dynamics algorithm. Macromolecules, 25:769– 775, 1992.Google Scholar
  43. 232.
    G. Chirico and J. Langowski. Kinetics of DNA supercoiling studied by Brownian dynamics simulation. Biopolymers, 34:415–433, 1994.Google Scholar
  44. 233.
    G. Chirico and J. Langowski. Brownian dynamics simulations of supercoiled DNA with bent sequences. Biophys. J., 71:955–971, 1996.Google Scholar
  45. 234.
    eferences [234] T. K. Chiu and R. E. Dickerson. 1 A crystal structures of B-DNA reveal sequence- specific binding and groove-specific bending of DNA by magnesium and calcium. . Mol. Biol., 301:915–945, 2000.Google Scholar
  46. 239.
    V. B. Chu, Y. Bai, J. Lipfert, D. Herschlag, and S. Doniach. Evaluation of ion bind- ing to DNA duplexes using a size-modified Poisson-Boltzmann theory. Biophys. J., 93:3202–3209, 2007.Google Scholar
  47. 240.
    V. B. Chu, Y. Bai, J. Lipfert, D. Herschlag, and S. Doniach. A repulsive field: Advances in the electrostatics of the ion atmosphere. Curr. Opin. Chem. Biol., 12:619–625, 2008.Google Scholar
  48. 255.
    B. D. Coleman and D. Swigon. Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. J. Elasticity, 60:173–221, 2000.MathSciNetMATHGoogle Scholar
  49. 256.
    B. D. Coleman, D. Swigon, and I. Tobias. Elastic stability of DNA configurations: II. Supercoiled plasmids with self-contact. Phys. Rev. E, 61:759–770, 2000.MathSciNetGoogle Scholar
  50. 274.
    D. Crothers. DNA curvature and deformation in protein-DNA complexes: A step in the right direction. Proc. Natl. Acad. Sci. USA, 95:15163–15165, 1998.Google Scholar
  51. 276.
    D. Crothers, T. E. Haran, and J. G. Nadeau. Intrinsically bent DNA. J. Biol. Chem., 265:7093–7096, 1990.Google Scholar
  52. 279.
    G. C˘alug˘areanu. Sur les classes d’isotopie des noeuds tridimensionnels et leurs invariants. Czechoslovak Math. J., 11:588–624, 1961.Google Scholar
  53. 287.
    C. A. Davey, D. F. Sargent, K. Luger, A. W. M¨aeder, and T. J. Richmond. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 A resolution. J. Mol. Biol., 319:1097–1113, 2002.Google Scholar
  54. 292.
    O. Norberto de Souza and R. L. Ornstein. Inherent DNA curvature and flexibility correlate with TATA box functionality. Biopolymers, 46:403–415, 1998.Google Scholar
  55. 305.
    D. J. Dichmann, Y. Li, and J. H. Maddocks. Hamiltonian formulations and symme- tries in rod mechanics. In J. P. Mesirov, K. Schulten, and D. W. Sumners, editors, Mathematical Applications to Biomolecular Structure and Dynamics, volume 82 of IMA Volumes in Mathematics and Its Applications, pages 71–113, New York, NY, 1996. Springer-Verlag.Google Scholar
  56. 307.
    R. E. Dickerson, M. Bansal, C. R. Calladine, S. Diekmann, W. N. Hunter, O. Kennard, E. von Kitzing, R. Lavery, H. C.M. Nelson,W. K. Olson,W. Saenger, Z. Shakked, H. Sklenar, D. M. Soumpasis, C.-S. Tung, A. H.-J. Wang, and V. B. hurkin. Definitions and nomenclature of nucleic acid structure parameters. J. Mol. iol., 208:787–791, 1989.Google Scholar
  57. 308.
    R. E. Dickerson and T. K. Chiu. Helix bending as a factor in protein/DNA recognition. Biopolymers, 44:361–403, 1997.Google Scholar
  58. 309.
    R. E. Dickerson and H. R. Drew. Structure of a B-DNA dodecamer. II. influence of base sequence on helix structure. J. Mol. Biol., 149:761–786, 1981.Google Scholar
  59. 310.
    R. E. Dickerson, D. S. Goodsell, and M. L. Kopka. MPD and DNA bending in crystals and in solution. J. Mol. Biol., 256:108–125, 1996.Google Scholar
  60. 311.
    R. E. Dickerson, D. S. Goodsell, and S. Neidle. “... the tyranny of the lattice ...”. roc. Natl. Acad. Sci. USA, 91:3579–3583, 1994.Google Scholar
  61. 312.
    A. D. DiGabriele, T. A., and Steitz. A DNA dodecamer containing an adenine tract crystallizes in a unique lattice and exhibits a new bend. J. Mol. Biol., 231:1024– 1039, 1993.Google Scholar
  62. 321.
    S. B. Dixit, D. L. Beveridge, D. A. Case, T. E. Cheatham, III, E. Giudice, F. Lankas, R. Lavery, J. H. Maddocks, R. Osman, H. Sklenar, K. M. Thayer, and P. Varnai. olecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. II: Sequence context effects on the dynamical structures of the 10 unique dinucleotide steps. Biophys. J., 89:3721–3740, 2005.Google Scholar
  63. 324.
    M. Dlakic and R. E. Harrington. The effects of sequence context on DNA curva- ture. Proc. Natl. Acad. Sci. USA, 93:3847–3852, 1996. [Erratum appeared in Proc. atl. Acad. Sci. USA, 93:8796, 1996.].Google Scholar
  64. 330.
    B. Dorigo, T. Schalch, A. Kulangara, S. Duda, R. R. Schroeder, and T. J. Rich- mond. Nucleosome arrays reveal the two-start organization of the chromatin fiber. cience, 306:1571–1573, 2004.Google Scholar
  65. 334.
    R. B. Dover, L. F. Schneemeyer, and R. M. Fleming. Discovery of a useful thin-film dielectric using a composition-spread approach. Nature, 392:162–164, 1998.Google Scholar
  66. 352.
    M. Egholm, P. E. Nielsen, O. Buchardt, and R. H. Berg. Recognition of guanine and adenine in DNA by cytosine and thymine containing peptide nucleic-acids (PNA). J. Amer. Chem. Soc., 114:9677–9678, 1992.Google Scholar
  67. 353.
    M. Egli. DNA-cation interactions: Quo vadis? Chem. Biol., 9:277–286, 2002.Google Scholar
  68. 380.
    M. Feig, Jr. A. D. MacKerell, and C. L. Brooks, III. Force field influence on the observation of π-helical protein structures in molecular dynamics simulations. . Phys. Chem. B, 107:2831–2836, 2003.Google Scholar
  69. 383.
    M. Feig and B.M. Pettitt. Structural equilibrium of DNA represented with different force fields. Biophys. J., 75:134–149, 1998.Google Scholar
  70. 386.
    P. W. Fenimore, H. Frauenfelder, B. H. McMahon, and F. G. Parak. Slaving: Sol- vent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. SA, 99:16047–16051, 2002.Google Scholar
  71. 401.
    F. Figueirido, R. M. Levy, R. Zhou, and B. J. Berne. Large scale simulation of macromolecules in solution: Combining the periodic fast multipole method with multiple time step integrators. J. Chem. Phys., 106:9835–9849, 1997. (Erratum published in J. Chem. Phys. 107:7002, 1997).Google Scholar
  72. 405.
    B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. Giampapa, M. C. itman, and R. S. Germain. Blue matter: approaching the limits of concurrency for classical molecular dynamics. In Supercomputing, 2006. SC’06. Proceedings of the ACM/IEEE SC 2006 Conference, pages 44–44, 2006.Google Scholar
  73. 406.
    M. Fixman. Construction of Langevin forces in the simulation of hydrodynamic interaction. Macromolecules, 19:1204–1207, 1986.Google Scholar
  74. 410.
    J. Flori´an, M. F. Goodman, and A. Warshel. Computer simulation of the chemical catalysis of DNA polymerases: Discriminating between alternative nu- cleotide insertion mechanisms for T7 DNA polymerase. J. Amer. Chem. Soc., 125:8163–8177, 2003.Google Scholar
  75. 431.
    M. Friedrichs, R. Zhou, S. R. Edinger, and R. A. Friesner. Poisson-Boltzmann analytical gradients for molecular modeling calculations. J. Phys. Chem. B, 103: 3057–3061, 1999.Google Scholar
  76. 432.
    R. A. Friesner and J. R. Gunn. Computational studies of protein folding. Annu. ev. Biophys. Biomol. Struc., 25:315–342, 1996.Google Scholar
  77. 439.
    H. H. Gan, A. Tropsha, and T. Schlick. Lattice protein folding with two and four- body statistical potentials. Proteins: Struc. Func. Gen., 43:161–174, 2001.Google Scholar
  78. 473.
    H. Gonzlez-Daz, S. Vilar, L. Santana, and E. Uriarte. Medicinal chemistry and bioinformatics–current trends in drugs discovery with networks topological indices. Curr. Top. Med. Chem., 7:1015–1029, 2007.Google Scholar
  79. 483.
    L. Greengard and V. Rokhlin. A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.MathSciNetGoogle Scholar
  80. 491.
    O. Guvench and Jr. A. D.MacKerell. Comparison of protein force fields for molec- ular dynamics simulations. In A. Kukol, editor, Methods in Molecular Biology, volume 443, pages 63–88. Humana Press, Totowa, NJ, 2008.Google Scholar
  81. 492.
    W.W. Hager and H. Zhang. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Opt., 16:170, 2005.MathSciNetMATHGoogle Scholar
  82. 512.
    T. Hansson, C. Oostenbrink, and W. F. van Gunsteren. Molecular dynamics simulations. Curr. Opin. Struct. Biol., 12:190–196, 2002.Google Scholar
  83. 514.
    M.-H. Hao and W. K. Olson. Modeling DNA supercoils and knots with B-spline functions. Biopolymers, 28:873–900, 1989.Google Scholar
  84. 515.
    M. H. Hao, M. R. Pincus, S. Rackovsky, and H. A. Scheraga. Unfolding and re- folding of the native structure of bovine pancreatic trypsin inhibitor studied by computer simulations. Biochemistry, 32:9614–9631, 1993.Google Scholar
  85. 520.
    W. E. Harte, Jr., S. Swaminathan, and D. L. Beveridge. Molecular dynamics of HIV-1 protease. Proteins: Struc. Func. Gen., 13:175–194, 1992.Google Scholar
  86. 523.
    S. C. Harvey and H. A. Gabb. Conformational transitions using molecular dynamics with minimum biasing. Biopolymers, 33:1167–1172, 1993.Google Scholar
  87. 527.
    Y. Hashem and P. Auffinger. A short guide for molecular dynamics simulations of RNA systems. Methods, 47:187–197, 2009.Google Scholar
  88. 551.
    J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization. Al- gorithms I, volume 305 of Grundlehren der mathematischen Wissenschaften. A Series of Comprehensive Studies in Mathematics. Springer-Verlag, Berlin and Heidelberg, 1993.Google Scholar
  89. 557.
    E. Hodgkin and K. Andrew-Cramer. Compound collections get focused. Modern Drug Discovery, 3:55–60, 2000.Google Scholar
  90. 567.
    B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry. cience, 268:1144–1149, 1995.Google Scholar
  91. 577.
    J. Hu, A. Ma, and R. Dinner. Monte Carlo simulations of biomolecules: the MC module in CHARMM. J. Comput. Chem., 27:203–216, 2006.Google Scholar
  92. 578.
    H. Huang, R. Chopra, G. L. Verdine, and S. C. Harrison. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug resistance. Science, 282:1669–1675, 1998.Google Scholar
  93. 586.
    T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: Systems biology. Ann. Rev. Genom. Hum. Genet., 2:343–372, 2001.Google Scholar
  94. 607.
    R. M. Jendrejack, M. D. Graham, and J. J. de Pablo. Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations. J. Chem. Phys., 113:2894–2900, 2000.Google Scholar
  95. 608.
    M. Ø Jensen, E. Tajkhorshid, and K. Schulten. The mechanism of glycerol conduction in aquaglyceroporins. Structure, 9:1083–1093, 2001.Google Scholar
  96. 631.
    G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen. Evaluation and reparameterization of the OPLS-AA force field for proteins via compari- son with accurate quantum chemical calculations on peptides. J. Phys. Chem. B, 105:6474–6487, 2001.Google Scholar
  97. 641.
    J. Khandogin and D. M. York. Quantum mechanical characterization of nucleic acids in solution: A linear-scaling study of charge fluctuations in DNA and RNA. . Phys. Chem. B, 106:7693–7703, 2002.Google Scholar
  98. 651.
    H. Kitano. A robustness-based approach to systems-oriented drug design. Nat. Rev. rug Disc., 6:202–210, 2007.Google Scholar
  99. 653.
    I. Klapper. Biological applications of the dynamics of twisted elastic rods. . Comput. Phys., 125:325–337, 1996.Google Scholar
  100. 656.
    D. J. Klein, T. M. Schmeing, P. B. Moore, and T. A. Steitz. The kink-turn: A new RNA secondary structure motif. EMBO J., 20:4214–4221, 2001.Google Scholar
  101. 657.
    M. L. Klein and W. Shinoda. Large-scale molecular dynamics simulations of self- assembling systems. Science, 321:798–800, 2008.Google Scholar
  102. 674.
    E. V. Koonin, L. Aravind, and A. S. Kondrashov. The impact of comparative genomics on our understanding of evolution. Cell, 101:573–576, 2000.Google Scholar
  103. 675.
    G. Koren, J. Cairns, D. Chitayat, A. Gaedigk, and S. J. Leeder. Pharmacogenet- ics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. ancet, 368:704, 2006.Google Scholar
  104. 682.
    R. Z. Kramer, J. Bella, B. Brodsky, and H. M. Berman. The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence. J. Mol. iol., 311:131–147, 2001.Google Scholar
  105. 694.
    M. L. Lamb, K. W. Burdick, S. Toba, M. M. Young, A. G. Skillman, X. Zou, J. R. Arnold, and I. D. Kuntz. Design, docking, and evaluation of multiple libraries against multiple targets. Proteins: Struc. Func. Gen., 42:296–318, 2001.Google Scholar
  106. 697.
    E. Lander. The new genomics: Global views of biology. Science, 274:536–539, 1996.Google Scholar
  107. 698.
    eferences [696] C. H. Langley and N. L. Allinger. Molecular mechanics (MM4) and ab initio study of amide-amide and amide-water dimers. J. Phys. Chem. A, 107:5208–5216, 2003.Google Scholar
  108. 699.
    J. Langowski. Salt effects on internal motions of superhelical and linear pUC8 DNA. Dynamic light scattering studies. Biophys. Chem., 27:263–271, 1987.Google Scholar
  109. 705.
    U. Laserson, H. H. Gan, and T. Schlick. Exploring the connection between synthetic and natural RNAs in genomes via a novel computational approach. n B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Sch¨uette, and R. D. Skeel, editors, New Algorithms for Macromolecular Sim- ulation, Proceedings of the Fourth International Workshop on Algorithms for Macromolecular Modelling, Leicester, UK, August 2004, volume 49 of Lec- ture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, Germany, 2005.Google Scholar
  110. 723.
    P. L’Ecuyer and F. Panneton. F2-linear random number generators. In C. Alexopoulos, D. Goldsman, and J. R. Wilson, editors, Advancing the Fron- tiers of Simulation: A Festschrift in Honor of George Samuel Fishman, pages 169–193. Springer-Verlag, New York, NY, 2009.Google Scholar
  111. 734.
    B. Leimkuhler and S. Reich. A Metropolis adjusted Nosé-Hoover thermostat. ath. Mod. Num. Anal., 2009. In Press.Google Scholar
  112. 741.
    N. B. Leontis and E. Westhof. Analysis of RNA motifs. Curr. Opin. Struct. Biol., 13:300–308, 2003.Google Scholar
  113. 745.
    C. Levinthal. Are there pathways for protein folding? J. Chim. Physique, 65:44–45, 1969.Google Scholar
  114. 763.
    X. Liang, H. Kuhn, and M.D. Frank-Kamenetskii. Monitoring single-stranded DNA secondary structure formation by determining the topological state of DNA catenanes. Biophys. J., 90:2877–2889, 2006.Google Scholar
  115. 786.
    S. Louise-May, P. Auffinger, and E. Westhof. Calculations of nucleic acid conformations. Curr. Opin. Struct. Biol., 6:289–298, 1996.Google Scholar
  116. 790.
    R. Ludwig. Water: From clusters to the bulk. Angew. Chem. Int. Ed., 40:1808– 1827, 2001.Google Scholar
  117. 800.
    eferences [798] B. Ma, J.-H. Lii, H. F. Schaefer, III, and N. L. Allinger. Systematic comparison of experimental, quantum mechanical, and molecular mechanical bond lengths for organic molecules. J. Phys. Chem., 100:8763–8769, 1996.Google Scholar
  118. 808.
    A. D. MacKerell, Jr., M. Feig, and C. L. Brooks, III. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum me- chanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem., 25:1400–1415, 2004.Google Scholar
  119. 815.
    J. D. Madura, M. E. Davis, M. K. Gilson, R. C. Wade, B. A. Luty, and J. A. cCammon. Biological applications of electrostatic calculations and Brownian dynamics simulations. In K. B. Lipkowitz and D. B. Boyd, editors, Reviews in Computational Chemistry, volume V, pages 229–267. VCH Publishers, New York, NY, 1994.Google Scholar
  120. 822.
    Y. Mandel-Gutfreund, H. Margalit, R. L. Jernigan, and V. B. Zhurkin. A role for CH· · ·O interactions in protein-DNA recognition. J. Mol. Biol., 277:1129–1140, 1998.Google Scholar
  121. 823.
    M. Mandziuk and T. Schlick. Resonance in the dynamics of chemical systems simulated by the implicit-midpoint scheme. Chem. Phys. Lett., 237:525–535, 1995.Google Scholar
  122. 824.
    G. S. Manning. The molecular theory of polyelectrolyte solutions with appli- cations to the electrostatic properties of polynucleotides. Quart. Rev. Biophys., 179:181–246, 1978.Google Scholar
  123. 825.
    G. S. Manning, K. K. Ebralidse, A. D. Mirzabekov, and A. Rich. An estimate of the extent of folding of nucleosomal DNA by laterally asymmetric neutralization of phosphate groups. J. Biomol. Struct. Dynam., 6:877–889, 1989.Google Scholar
  124. 829.
    P. Maragakis, K. Lindorff-Larsen, M. P. Eastwood, R. O. Dror, J. L. Klepeis, I. T. rkin, M. Ø Jensen, H. Xu, N. Trbovic, R. A. Friesner, A. G. Palmer, III, and D. E. Shaw. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameter of proteins. J. Phys. Chem. B, 112:6155–6158, 2008.Google Scholar
  125. 830.
    L. Maragliano and E. Vanden-Eijnden. Single-sweep methods for free energy calculations. J. Chem. Phys., 128:184110, 2008.Google Scholar
  126. 834.
    G. Marsaglia and L.-H Tsay. Matrices and the structure of random number sequences. Lin. Alg. Appl., 67:147–156, 1985.Google Scholar
  127. 843.
    J. Maupetit, P. Derreumaux, and P. Tufféry. A fast method for large-scale de novo peptide and miniprotein structure prediction. J. Comput. Chem., 31:726–738, 2009.Google Scholar
  128. 844.
    D. S. Maxwell, J. Tirado-Rives, and W. L. Jorgensen. A comprehensive study of the rotational energy profiles of organic systems by ab initio MO theory, forming a basis for peptide torsional potentials. J. Comput. Chem., 16:984–1010, 1995.Google Scholar
  129. 850.
    J. J. McCarthy and R. Hilfiker. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotech., 18:505–508, 2000.Google Scholar
  130. 851.
    J. L. McCauley. Chaos, Dynamics, and Fractals: an Algorithmic Approach to Deterministic Chaos. Cambridge University Press, Cambridge, 1994.Google Scholar
  131. 865.
    A. Mironov, V. Epshtein, and E. Nudler. Transcriptional approaches to riboswitch studies. Methods Mol. Biol., 540, 2009.Google Scholar
  132. 883.
    D.W. Mount. Bioinformatics. Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001.Google Scholar
  133. 893.
    L. Naldini. A comeback for gene therapy. Science, 326:805–806, 2009.Google Scholar
  134. 895.
    X. Nassif. A furtive pathogen revealed. Science, 287:1767–1768, 2000.Google Scholar
  135. 896.
    S. Neidle. DNA Structure and Recognition. Oxford University Press, Oxford, England, 1994.Google Scholar
  136. 903.
    N. Nevins, J.-H. Lii, and N. L. Allinger. Molecular mechanics (MM4) calculations on conjugated hydrocarbons. J. Comput. Chem., 17:695–729, 1996.Google Scholar
  137. 939.
    S. Oliver. Proteomics: Guilt-by-association goes global. Nature, 403:601–602, 2000.Google Scholar
  138. 940.
    M. V. Olson. Dr. watson’s base pairs. Nature, 452:819–820, 2008.Google Scholar
  139. 942.
    eferences [938] W. K. Olson. Theoretical studies of nucleic acid conformation: Potential energies, chain statistics, and model building. In S. Neidle, editor, Topics in Nucleic Acid Structures: Part 2, pages 1–79. Macmillan Press, London, England, 1982.Google Scholar
  140. 943.
    W. K. Olson. Simulating DNA at low resolution. Curr. Opin. Struct. Biol., 6:242–256, 1996.Google Scholar
  141. 945.
    W. K. Olson, S. K. Burley, R. E. Dickerson, M. Gerstein, S. C. Harvey, U. Heinemann, X.-J. Lu, S.Neidle, Z. Shakked,M. Suzuki, X.-S. Tung, H. Sklenar, J. Westbrook, E. Westhof, C. Wolberger, and H. Berman. A standard refer- ence frame for the description of nucleic acid base-pair geometry. J. Mol. Biol., 313:229–237, 2001. Available also through posting on NDB Archives, ndb- and Scholar
  142. 946.
    W. K. Olson, A. A. Gorin, X J. Lu, L. M. Hock, and V. B. Zhurkin. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. roc. Natl. Acad. Sci. USA, 95:11163–11168, 1998.Google Scholar
  143. 947.
    W. K. Olson, N. L. Markey, R. L. Jernigan, and V. B. Zhurkin. Influence of fluc- tuations on DNA curvature. A comparison of flexible and static wedge models of intrinsically bent DNA. J. Mol. Biol., 232:530–554, 1993.Google Scholar
  144. 971.
    R.W. Pastor, B. R. Brooks, and A. Szabo. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 65:1409–1419, 1988.Google Scholar
  145. 989.
    O. E. Percus and M. H. Kalos. Random number generators for MIMD parallel processors. J. Paral. Dist. Comput., 6:477–497, 1989.Google Scholar
  146. 995.
    J.W. Perram, H. G. Petersen, and S.W. De Leeuw. An algorithm for the simulation of condensed matter which grows as the 2 power of the number of particles. Mol. hys., 65:875–893, 1988.Google Scholar
  147. 1013.
    G. E. Plum, D. S. Pilch, S. F. Singleton, and K. J. Breslauer. Nucleic acid hy- bridization: Triplex stability and energetics. Ann. Rev. Biophys. Biomol. Struc., 24:319–350, 1995.Google Scholar
  148. 1017.
    M. J. D. Powell. Restart procedures for the conjugate gradient method. Math. rog., 12:241–254, 1977.MATHGoogle Scholar
  149. 1020.
    W. H. Press, S. A. Teukolosky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in Fortran 77: The Art of Scientific Computing, volume 1 of Fortran Numerical Recipes. Cambridge University Press, New York, NY, second edition, 1992.Google Scholar
  150. 1026.
    M. Ptashne. How gene activators work. Sci. Amer., 260:41–47, 1989.Google Scholar
  151. 1036.
    R. Radhakrishnan and T. Schlick. Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase β’s closing. Proc. Natl. Acad. Sci. USA, 101:5970–5975, 2004.Google Scholar
  152. 1040.
    A. Rahman and F. H. Stillinger. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys., 60:1545–1557, 1974.Google Scholar
  153. 1050.
    J. Ren, R. M. Esnouf, A. L. Hopkins, E. Y. Jones, I. Kirby, J. Keeling, C. K. oss, B.A. Larder, D. I. Stuart, and D. K. Stammers. 3_-Azido-3_-deoxythymidine drug resistance mutations in HIV-1 reverse transcriptase can induce long range conformational changes resistance. Proc. Natl. Acad. Sci. USA, 95:9518–9523, 1998.Google Scholar
  154. 1052.
    G. Rhodes. Crystallography Made Crystal Clear: A Guide for Users of Macro- molecular Models. Academic Press, San Diego, CA, second edition, 2000.Google Scholar
  155. 1055.
    T. J. Richmond and C. A. Davey. The structure of DNA in the nucleosome core. ature, 423:145–150, 2003.Google Scholar
  156. 1074.
    I. K. Roterman, M. H. Lambert, K. D. Gibson, and H. A. Scheraga. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. φψ maps for N´-methyl amide: Comparisons, contrasts and simple experimental tests. J. Biomol. truct. Dyn., 7:421–453, 1989.Google Scholar
  157. 1076.
    J. Rotne and S. Prager. Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys., 50:4831–4837, 1969.Google Scholar
  158. 1080.
    M. Rueda, P. Chacon, andM. Orozco. Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. Structure, 15:565–575, 2007.Google Scholar
  159. 1094.
    A. Sandu and T. Schlick. Masking resonance artifacts in force splitting methods for biomolecular simulations by extrapolative Langevin dynamics. J. Comput. Phys., 151:74–113, May 1999. (Special Volume on Computational Biophysics).Google Scholar
  160. 1095.
    J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chapman & Hall, London, England, 1994.Google Scholar
  161. 1096.
    R. Sarma. Ramachandran: A Biography of Gopalasamudram Narayana Ra- machandran, the Famous Indian Biophysicist. Adenine Press, Schenectady, NY, 1998.Google Scholar
  162. 1097.
    H. F. Schaefer. Methylene: A paradigm for computational quantum chemistry. cience, 231:1100–1107, 1986.Google Scholar
  163. 1100.
    J. A. Schellman. Flexibility of DNA. Biopolymers, 13:217–226, 1974.Google Scholar
  164. 1105.
    J. F. Schildbach, A. W. Karzai, B. E. Raumann, and R. T. Sauer. Origins of DNA- binding specificity: Role of protein contacts with the DNA backbone. Proc. Natl. cad. Sci. USA, 96:811–817, 1999.Google Scholar
  165. 1114.
    T. Schlick. Computational molecular biophysics today: A confluence of method- ological advances and complex biomolecular applications. J. Comput. Phys., 151:1–8, May 1999. (Special Volume on Computational Biophysics).Google Scholar
  166. 1119.
    T. Schlick. From macroscopic to mesoscopic models of chromatin folding. In J. Fish, editor, Bridging The Scales in Science in Engineering, pages 514–535. xford University Press, New York, NY, 2009.Google Scholar
  167. 1124.
    T. Schlick, D. Beard, J. Huang, D. Strahs, and X. Qian. Computational challenges in simulating large DNA over long times. IEEE Comput. Sci. Eng., 2(6):38–51, November/December 2000. (Special Issue on Computational Chemistry).Google Scholar
  168. 1125.
    T. Schlick, S. Figueroa, andM.Mezei. A molecular dynamics simulation of a water droplet by the implicit-Euler/Langevin scheme. J. Chem. Phys., 94:2118–2129, 1991.Google Scholar
  169. 1127.
    T. Schlick and A. Fogelson. TNPACK—A truncated Newton minimization pack- age for large-scale problems: II. Implementation examples. ACM Trans. Math. oftw., 14:71–111, 1992.Google Scholar
  170. 1128.
    T. Schlick and H. H. Gan. Methods for macromolecular modeling (M3): As- sessment of progress and future perspectives. In T. Schlick and H. H. Gan, editors, Computational Methods for Macromolecules: Challenges and Appli- cations — Proceedings of the 3rd International Workshop on Algorithms for Macromolecular Modelling, New York, October 12–14, 2000, volume 24 of Lec- ture Notes in Computational Science and Engineering (Series Eds. M. Griebel, D.E. Keyes, R. M. Nieminen, D. Roose, and T. Schlick), pages 1–25, Berlin, 2002. pringer-Verlag.Google Scholar
  171. 1129.
    T. Schlick, B. Li, and M.-H. Hao. Calibration of the timestep for molecular dy- namics of supercoiled DNA modeled by B-splines. In R. H. Sarma and M. H. arma, editors, Structural Biology: The State of the Art, Proceedings of the Eighth Conversation in the Discipline of Biomolecular Stereodynamics, Volume I, pages 157–174, Schenectady, NY, 1994. Adenine Press.Google Scholar
  172. 1138.
    T. Schlick, R. D. Skeel, A. T. Br¨unger, L. V. Kalé, J. A. Board, Jr., J. Hermans, and K. Schulten. Algorithmic challenges in computational molecular biophysics. . Comput. Phys., 151:9–48, May 1999. (Special Volume on Computational Biophysics).Google Scholar
  173. 1139.
    T. Schlick and L. Yang. Long-timestep biomolecular dynamics simulations: LN performance on a polymerase β / DNA system. In A. Brandt, J. Bernholc, and K. Binder, editors, Multiscale Computational Methods in Chemistry and Physics, volume 177 of NATO Science Series. Series III: Computer and Systems Sciences, pages 293–305, Amsterdam, The Netherlands, 2001. IOS Press.Google Scholar
  174. 1140.
    F. Schluenzen, A. Tocilj, R. Zarivach, J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels, I. Agmon, F.Franceschi, and A. Yonath. Structure of func- tionally activated small ribosomal subunit at 3.3 A resolution. Cell, 102:615–623, 2000.Google Scholar
  175. 1141.
    K. E. Schmidt and M. A. Lee. Implementing the fast multipole method in three dimensions. J. Stat. Phys., 63:1223–1235, 1991.Google Scholar
  176. 1143.
    B. Schneider and H. M. Berman. Hydration of the DNA bases is local. Biophys. J., 69:2661–2669, 1995.Google Scholar
  177. 1144.
    B. Schneider, D. Cohen, and H. M. Berman. Hydration of DNA bases: Analysis of crystallographic data. Biopolymers, 32:725–750, 1992.Google Scholar
  178. 1155.
    K. A. Scott, P. J. Bond, A. Ivetac, A. P. Chetwynd, S. Khalid, and M. S. P. San- som. Coarse-grained MD simulations of membrane protein-bilayer self-assembly. tructure, 16:621–630, 2008.Google Scholar
  179. 1156.
    M. R. Scott, R. Will, J. Ironside, H.-Oanh B. Nguyen, P. Tremblay, S. J. DeArmond, and S. B. Prusiner. Compelling transgenetic evidence for trans- mission of bovine spongiform encephalopathy prions to humans. Proc. Natl. Acad. ci. USA, 96:15137–15142, 1999.Google Scholar
  180. 1157.
    R. A. Scott and H. A. Scheraga. Method for calculating internal rotation barriers. . Chem. Phys., 42:2209–2215, 1965.Google Scholar
  181. 1159.
    W. G. Scott, J. T. Finch, and A. Klug. The crystal structure of an all-RNA ham- merhead ribozyme: A proposed mechanism for RNA catalytic cleavage. Cell, 81:991–1002, 1995.Google Scholar
  182. 1171.
    A. Serganov, A. Polonskaia, A. T. Phan, R. R. Breaker, and D. J. Patel. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature, 441:1167–1171, 2006.Google Scholar
  183. 1175.
    J.-E. Shea and C. L. Brooks, III. From folding theories to folding proteins: A re- view and assessment of simulation studies of protein folding and unfolding. Annu. ev. Phys. Chem., 52:499–535, 2001.Google Scholar
  184. 1182.
    M. Shirts and V. Pande. Screen savers of the world unite! Science, 290:1903–1904, 2000.Google Scholar
  185. 1191.
    J. C. Simo and N. Tarnow. The discrete energy-momentum method. Conserv- ing algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys., 43:757–793, 1992.MathSciNetMATHGoogle Scholar
  186. 1211.
    T. A. Soares, P. H. H¨unenberger, M. A. Kastenholz, V. Kr¨autler, T. Lenz, R. D. ins, C. Oostenbrink, and W. F. van Gunsteren. An improved nucleic acid parameter set for the GROMOS force field. J. Comput. Chem., 26:725–737, 2005.Google Scholar
  187. 1212.
    G. A. Soukup and R. R. Breaker. Engineering precision RNA molecular switches. roc. Natl. Acad. Sci. USA, 96:3584–3589, 1999.Google Scholar
  188. 1213.
    G. A. Soukup and R. R. Breaker. Allosteric nucleic acid catalysts. Curr. Opin. truct. Biol., 10:318–325, 2000.Google Scholar
  189. 1214.
    B. Space, H. Rabitz, and A. Askar. Long time scale molecular dynamics subspace integration method applied to anharmonic crystals and glasses. J. Chem. Phys., 99:9070–9079, 1993.Google Scholar
  190. 1219.
    D. Sprous, II, R. K.-Z. Tan, and S. C. Harvey. Molecular modeling of closed circular DNA thermodynamic ensembles. Biopolymers, 39:248–258, 1996.Google Scholar
  191. 1230.
    E. Stofer, C. Chipot, and R. Lavery. Free energy calculations ofWatson-Crick base pairing in aqueous solution. J. Amer. Chem. Soc., 121:9503–9508, 1999.Google Scholar
  192. 1239.
    R. S. Struthers, J. Rivier, and A. T. Hagler. Theoretical simulation of conforma- tion, energetics, and dynamics in the design of GnRH analogs. Trans. Amer. Cryst. ssoc., 20:83–96, 1984. Proceedings of the Symposium on Molecules in Motion, University of Kentucky, Lexington, Kentucky, May 20–21, 1984.Google Scholar
  193. 1240.
    L. Stryer. Biochemistry. W. H. Freeman, New York, NY, 5 edition, 2001.Google Scholar
  194. 1249.
    W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer sim- ulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Applications to small water clusters. J. Chem. hys., 76:637–649, 1982.Google Scholar
  195. 1250.
    J. W. Szostak. RNA gets a grip on translation. Nature, 419:890–891, 2002.Google Scholar
  196. 1255.
    R. K.-Z. Tan, D. Sprous, and S. C. Harvey. Molecular dynamics simulations of small DNA plasmids: Effects of sequence and supercoiling on intramolecular motions. Biopolymers, 39:259, 1996.Google Scholar
  197. 1256.
    J. Tang and R. R. Breaker. Structural diversity of self-cleaving ribozymes. Proc. atl. Acad. Sci. USA, 97:5784–5789, 2001.Google Scholar
  198. 1260.
    V. Tereshko, G. Minasov, and M. Egli. A “Hydra-Ion” spine in B-DNA minor groove. J. Amer. Chem. Soc., 121:3590–3595, 1999.Google Scholar
  199. 1271.
    N. Toor, K.S. Keating, S. D. Taylor, and A. M. Pyle. Crystal structure of a self- spliced group II intron. Science, 320:77–82, 2008.Google Scholar
  200. 1272.
    A. Y. Toukmaji and J. A. Board, Jr. Ewald summation techniques in perspective: A survey. Comput. Phys. Commun., 95:73–92, 1996.MATHGoogle Scholar
  201. 1273.
    J. J. Toulme, C. Di Primo, and D. Boucard. Regulating eukaryotic gene expression with aptamers. FEBS Lett., 567:55–62, 2004.Google Scholar
  202. 1274.
    S. Toxvaerd. Comment on constrained molecular dynamics of macromolecules. . Chem. Phys., 87:6140–6143, 1987.Google Scholar
  203. 1284.
    M. E. Tuckerman, B.J. Berne, and G. J. Martyna. Molecular dynamics algorithm for multiple time scales: Systems with long range forces. J. Chem. Phys., 94:6811– 6815, 1991.Google Scholar
  204. 1285.
    M. E. Tuckerman, G. J. Martyna, and B. J. Berne. Molecular dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys., 93:1287–1291, 1990.Google Scholar
  205. 1288.
    P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403:623–627, 2000.Google Scholar
  206. 1297.
    W. F. van Gunsteren and H. J. C. Berendsen. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys., 34:1311–1327, 1977.Google Scholar
  207. 1305.
    K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, and Jr. A. D. MacKerell. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 2009. ublished online July 2, 2009; DOI 10.1002/jcc.Google Scholar
  208. 1306.
    D. F. Veber, F. H. Drake, and M. Gowen. The new partnership of genomics and chemistry for accelerated drug development. Curr. Opin. Chem. Biol., 1:151–156, 1997.Google Scholar
  209. 1307.
    L. Verlet. Computer ‘experiments’ on classical fluids: I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159(1):98–103, July 1967.Google Scholar
  210. 1308.
    M. A. Viswamitra, B. S. Reddy, G.H.-Y. Lin, and M. Sundaralingam. Stereochem- istry of nucleic acids and their constituents. XVII. Crystal and molecular structure of deoxycytidine 5’-phosphate monohydrate. A possible puckering for the fu- ranoside ring in B-deoxyribonucleic acid. J. Amer. Chem. Soc., 93:4565–4573, 1971.Google Scholar
  211. 1309.
    eferences [1304] C. T. Vogelson. Advances in drug delivery systems. Mod. Drug Dis., 4:49–52, 2001.Google Scholar
  212. 1310.
    A. V. Vologodskii. Topology and physics of circular DNA. CRC Press, Boca Raton, Florida, 1992.Google Scholar
  213. 1311.
    A. V. Vologodskii, V. V. Anshelevich, A. V. Lukashin, and M. D. Frank- Kamenetskii. Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix. Nature, 280:294–298, 1979.Google Scholar
  214. 1312.
    A. V. Vologodskii and N. R. Cozzarelli. Conformational and thermodynamic properties of supercoiled DNA. Ann. Rev. Biophys. Biomol. Struc., 23:609–643, 1994.Google Scholar
  215. 1313.
    A. V. Vologodskii and N. R. Cozzarelli. Supercoiling, knotting, looping, and other large-scale conformational properties of DNA. Curr. Opin. Struct. Biol., 4:372– 375, 1994.Google Scholar
  216. 1339.
    L. Wang, X. Yu, P. Hu, S. Broyde, and Y. Zhang. A water-mediated and substrate- assisted catalytic mechanism for sulfolobus solfataricus DNA polymerase IV. . Amer. Chem. Soc., 129:4731–4747, 2007.Google Scholar
  217. 1365.
    F. Weinhold. A new twist on molecular shape. Nature, 411:539–541, 2001.Google Scholar
  218. 1366.
    J. J. Wendoloski, S. J. Kimatian, C. E. Schutt, and F. R. Salemme. Molecular dynamics simulation of a phospholipid micelle. Science, 243:636–638, 1989.Google Scholar
  219. 1369.
    G. Wess, M. Urmann, and B. Sickenberger. Medicinal chemistry: Challenges and opportunities. Angew. Chem. Int. Ed., 40:3341–3350, 2001.Google Scholar
  220. 1370.
    J. Westbrook, Z. Feng, L. Chen, H. Yang, and H. M. Berman. The Protein Data Bank and structural genomics. Nucl. Acids Res., 31:489–491, 2003.Google Scholar
  221. 1373.
    D. A. Wheeler, M. Srinivasan, M. Egholm, Y. Shen, L. Chen, A. McGuire, W. He, Y. J. Chen, V.Makhijani, G. T. Roth, X. Gomes, K. Tartaro, F. Niazi, C. L. Turcotte, G. P. Irzyk, J. R. Lupski, C. Chinault, X. Z. Song, Y. Liu, Y. Yuan, L. Nazareth, X. Qin, D. M. Muzny, M. Margulies, G. M. Weinstock, R. A. Gibbs, and J. M. othberg. The complete genome of an individual by massively parallel DNA sequencing. Nature, 452:872–876, 2008.Google Scholar
  222. 1380.
    S. Willmann, A. N. Edginton, K. Coboeken, G. Ahr, and J. Lippert. Risk to the breast-fed neonate from codeine treatment to the mother: A quantitative mechanistic modeling study. Clin. Pharmacol. Ther., 86:634–643, 2009.Google Scholar
  223. 1382.
    E. O. Wilson. Consilience. The Unity of Knowledge. Alfred A. Knopf, New York, NY, 1998.Google Scholar
  224. 1384.
    B. T. Wimberly, D. E. Brodersen, W. M. Clemons Jr., R. J. Morgan-Warren, A. P. Carter, C. Vonrhein, T. Hartsch, and V. Ramakrishnan. Structure of the 30S ribosomal subunit. Nature, 407:327–339, 2000.Google Scholar
  225. 1388.
    C. R. Woese, S. Winker, and R. R. Gutell. Architecture of ribosomal RNA: Con- straints on the sequence of tetra-loops. Proc. Natl. Acad. Sci. USA, 87:8467–8471, 1990.Google Scholar
  226. 1392.
    P. G. Wolynes, J. N. Onuchic, and D. Thirumalai. Navigating the folding routes. cience, 267:1619–1620, 1995.Google Scholar
  227. 1410.
    Z. Xu, A. L. Horwich, and P. B. Sigler. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature, 388:741–750, 1997.Google Scholar
  228. 1412.
    H. Yamakawa. Modern Theory of Polymer Solutions. Harper and Row Publishers, New York, NY, 1971.Google Scholar
  229. 1417.
    Y. Yonetani, Y. Maruyama, F. Hirata, and H. Kono. Comparison of DNA hydration patterns obtained using two distinct computational methods, molecular dynam- ics simulation and three-dimensional reference interactions site model theory. . Chem. Phys., 128:185102, 2008.Google Scholar
  230. 1419.
    D. M. York, T.-S. Lee, and W. Yang. Parameterization and efficient implemen- tation of a solvent model for linear-scaling semiempirical quantum-mechanical calculations of biological macromolecules. Chem. Phys. Lett., 263:297–304, 1996.Google Scholar
  231. 1421.
    D. M. York, W. Yang, H. Lee, T. Darden, and L. G. Pederson. Toward the accurate modeling of DNA: The importance of long-range electrostatics. J. Amer. Chem. oc., 117:5001–5002, 1995.Google Scholar
  232. 1422.
    M. A. Young and D. L. Beveridge. Molecular dynamics simulations of an oligonu- cleotide duplex with adenine tracts phased by a full helix turn. J. Mol. Biol., 281:675–687, 1998.Google Scholar
  233. 1425.
    M. A. Young, B. Jayaram, and D. L. Beveridge. Local dielectric environment of B-DNA in solution: Results from a 14 ns molecular dynamics trajectory. J. Phys. hem. B, 102:7666–7669, 1998.Google Scholar
  234. 1441.
    G. Zhang and T. Schlick. The Langevin/implicit-Euler/Normal-Mode scheme (LIN) for molecular dynamics at large time steps. J. Chem. Phys., 101:4995–5012, 1994.Google Scholar
  235. 1454.
    R. Zhou, E. Harder, H. Xu, and B. J. Berne. Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems. J. Chem. hys., 115:2348–2358, 2001.Google Scholar
  236. 1455.
    C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B, FORTRAN subroutines for large scale bound constrained optimization. ACM Trans. Math. oftw., 23:550–560, 1997.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations