Skip to main content

Nucleic Acids Structure Minitutorial

  • Chapter
  • First Online:
Molecular Modeling and Simulation: An Interdisciplinary Guide

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 21))

  • 6628 Accesses

Abstract

With the master molecule of heredity, deoxyribonucleic acid (or DNA), so frequently mentioned in the media — in connections ranging from polymerase chain reaction (PCR) applications (e.g., criminology, medical diagnoses) to cloning and art [1112] — it is difficult to imagine today that it was only a few decades ago when Watson and Crick reported their description of the DNAdouble helix [13541356]! Based on analysis of DNA fiber diffraction patterns and Chargaff’s rules, they described a spiral image of an orderly helix — two intertwined polynucleotide chains, with a sugar/phosphate backbone on the exterior and pairs of hydrogen-bondednitrogenous bases in the center. See [622] for a historical perspective of this discovery, including the contribution of all key players (a capsule of which is given in Chapter 1), and anniversary issues of DNA, for example issued in 2003 in many journals (e.g., Nature Vol. 421 and Science Vol. 300) at the occasion of DNA’s golden anniversary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In transcription, an RNA polymerase glides along onestrand of the DNA double helix and builds an RNA complement by coupling ribonucleotides through dehydration synthesis. The faithful replicate of one DNA strand then functions as the messenger RNA.

  2. 2.

    In translation, the genetic code of the messenger RNA is read by transferRNA molecules on cellular structures called ribosomes. Every transfer RNA molecule carries a specific sequence of three nucleotides on one end of an L-shaped structure and the corresponding amino acid on the other. The transfer RNA’s main task is to deposit its amino acids on the ribosomes in proper sequence. In this process of matching each messenger-RNA codon with the complementary transfer RNA molecule, the polypeptide chain is assembled. As the amino acids link to one another on the ribosomes, polypeptide folding is thought to begin.

  3. 3.

    For example, N6-methyl-dA is a modified adenine base with the N6H2 (attachment to the ring carbon C6) moiety replaced by N6HCH3; 5-methyl-dC is a modified cytosine where the C5H becomes C5CH3.

  4. 4.

    Two classic tautomerization reactions are keto/enol and amino/imino; the keto and amino forms are typically favored and are shown in Figure 5.2. Keto/enol tautomerization involves alteration of the carbonyl group (–C = O) to a hydroxyl group ( = C–O–H), shifting the double bond from the carbonyl group to the nitrogen-carbon bond in the ring (e.g., C6 = O of G becomes C6–OH, accompanied by the change of H–N1–C6 to N1 = C6). Similarly, an amino/imino tautomerization involves a change in an amino nitrogen –NH2 to an imino form, = NH (e.g., C6–NH2 of A becomes C6 = NH, accompanied by the change of N1 = C6 to H–N1–C6).

  5. 5.

    An ester is an –OR group where R represents an organic chemical group.

  6. 6.

    An adiabatic map is a simple way to examine molecular motionby characteristic low-energy paths along a prescribed reaction coordinate (i.e., variations in specific conformational variables). For each combination of these conformational coordinates, the entire potential energy of the system is minimized to approximate behavior for the motion under study. Though simple in principle, specification of the reaction coordinate is difficult in general, and the neglect of other degrees of freedom in the process is clearly an approximation whose validity depends on the motion in question.

  7. 7.

    Namely, each nucleoside is enveloped in a water sphere of radius 11 Å, and the nonbonded interactions are truncated at 12 Å using a 2 Å buffer region, a potential shift function for the electrostatic terms and a potential switch function for the van der Waals terms; see 10Nonbonded Computationschapter.10.566 for details of such procedures.

  8. 8.

    In a right-handed form, a right hand held with the thumb pointingupward in the direction of the helix axis will wrap right (counterclockwise) and around the axis to follow the chain; a left hand with an upward-pointing thumb will wrap to the left (clockwise) to follow the chain direction of a left-handed helix.

References

  1. C. Altona and M. Sundaralingam. Conformational analysis of the sugar ring in nu- cleosides and nucleotides. a new description using the concept of pseudorotation. J. Amer. Chem. Soc., 94:8205–8212, 1972.

    Google Scholar 

  2. M. Amos. Theoretical and Experimental DNA Computation. Natural Computing Series. Springer, New York, NY, 2005.

    Google Scholar 

  3. K. Arora and T. Schlick. Deoxyadenosine sugar puckering pathway simulated by the stochastic difference equation algorithm. Chem. Phys. Lett., 378:1–8, 2003.

    Article  Google Scholar 

  4. J. F. Atkins and R. Gesteland. The 22nd amino acid. Science, 296:1409–1410, 2002.

    Article  Google Scholar 

  5. P. Ban´aˇs, P. Jureˇcka, N. G. Walter, J. ˇSponer, and M. Otyepka. Theoretical studies of RNA catalysis: Hybrid QM/MM methods and their comparison with MD and QM. Methods, 49:202–216, 2009.

    Google Scholar 

  6. A. D. Bates and A. Maxwell. DNA Topology. In Focus. Oxford University Press, New York, NY, 1993.

    Google Scholar 

  7. Y. Benenson, B. Gil, U. B.-D., R. Adar, and E. Shapiro. An autonomous molecular computer for logical control of gene expression. Nature, 429:423–429, 2004.

    Google Scholar 

  8. H. M. Berman. Hydration of DNA: Take 2. Curr. Opin. Struct. Biol., 4:345–350, 1994.

    Article  Google Scholar 

  9. H. M. Berman. Crystal studies of B-DNA: The answers and the questions. iopolymers, 44:23–44, 1997.

    Google Scholar 

  10. H. M. Berman,W. K. Olson, D. L. Beveridge, J.Westbrook, A. Gelbin, T. Demeny, S.-H. Hsieh, A. R. Srinivasan, and B. Schneider. The nucleic acid database: A com- prehensive relational database of three-dimensional structures of nucleic acids. iophys. J., 63:751–759, 1992.

    Google Scholar 

  11. V. A. Bloomfield, D. M. Crothers, and I. Tinoco, Jr. Nucleic Acids: Structures, Properties, and Functions. University Science Press, New York, NY, 2000.

    Google Scholar 

  12. R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adleman. olution of a 20-variable 3-SAT problem on a DNA computer. Science, 296:499–502, 2002.

    Article  Google Scholar 

  13. C. Bustamante. In singulo biochemistry: When less is more. Ann. Rev. Biochem., 77:45–50, 2008.

    Article  Google Scholar 

  14. C. R. Calladine and H. R. Drew. Understanding DNA. The Molecule and How It Works. Academic Press, San Diego, CA, second edition, 1997.

    Google Scholar 

  15. R. Chandrasekaran and S. Arnott. The structure of B-DNA in oriented fibers. . Biomol. Struct. Dynam., 13:1015–1027, 1996.

    Google Scholar 

  16. T. E. Cheatham, III.Molecular modeling and atomistic simulation of nucleic acids. nn. Rev. Comp. Chem., 1:75–89, 2005.

    Google Scholar 

  17. T. E. Cheatham, III and P. A. Kollman. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J. Mol. iol., 259:434–444, 1996.

    Article  Google Scholar 

  18. eferences [234] T. K. Chiu and R. E. Dickerson. 1 A crystal structures of B-DNA reveal sequence- specific binding and groove-specific bending of DNA by magnesium and calcium. . Mol. Biol., 301:915–945, 2000.

    Google Scholar 

  19. V. B. Chu, Y. Bai, J. Lipfert, D. Herschlag, and S. Doniach. Evaluation of ion bind- ing to DNA duplexes using a size-modified Poisson-Boltzmann theory. Biophys. J., 93:3202–3209, 2007.

    Article  Google Scholar 

  20. N. R. Cozzarelli and J. C.Wang, editors. DNA Topology and Its Biological Effects. old Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990.

    Google Scholar 

  21. D. Cremer and J. A. Pople. A general definition of ring puckering coordinates. . Amer. Chem. Soc., 97:1354–1358, 1975.

    Google Scholar 

  22. eferences [272] F. H. C. Crick. What Mad Pursuit: A Personal View of Scientific Discovery. Alfred P. Sloan Foundation Series. Basic Books, New York, NY, 1988.

    Google Scholar 

  23. T. Darden, L. Perera, L. Li, and L. Pedersen. New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7:R55–R60, 1999.

    Article  Google Scholar 

  24. eferences [306] R. E. Dickerson. Definitions and nomenclature of nucleic acid structure parameters. EMBO J., 8:1–4, 1989.

    Google Scholar 

  25. R. E. Dickerson, M. Bansal, C. R. Calladine, S. Diekmann, W. N. Hunter, O. Kennard, E. von Kitzing, R. Lavery, H. C.M. Nelson,W. K. Olson,W. Saenger, Z. Shakked, H. Sklenar, D. M. Soumpasis, C.-S. Tung, A. H.-J. Wang, and V. B. hurkin. Definitions and nomenclature of nucleic acid structure parameters. J. Mol. iol., 208:787–791, 1989.

    Google Scholar 

  26. D. L. Ensign and V. S. Pande. The Fip35 WW domain folds with structural and mechanistic heterogeneity in molecular dynamics simulations. Biophys. J., 96:L53–L55, 2009.

    Article  Google Scholar 

  27. eferences [412] F. Fogolari, A. Brigo, and H. Molinari. The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit., 15:377–392, 2002.

    Google Scholar 

  28. M. C. Foley and T. Schlick. Simulations of dna pol λ R517 mutants indicate 517’s crucial role in ternary complex stability and suggest DNA slippage origin. J. Amer. hem. Soc., 130:3967–3977, 2008.

    Article  Google Scholar 

  29. J. Frank. Three-Dimensional Electron Microscopy of Macromolecular Assemblies. cademic Press, San Diego, CA, 1996.

    Google Scholar 

  30. T. A. Halgren. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for interaction energies and geometries. J. Comput. Chem., 20:730–748, 1999.

    Google Scholar 

  31. U. H. E. Hansmann and Y. Okamoto. New Monte Carlo algorithms for protein folding. Curr. Opin. Struct. Biol., 9:177–183, 1999.

    Article  Google Scholar 

  32. S. C. Harvey, M. Dlakic, J. Griffith, R. Harrington, K. Park, D. Sprous, and W. Zacharias.What is the basis of sequence-directed curvature in DNAs containing A-tracts? J. Biomol. Struct. Dynam., 13:301–307, 1995.

    Article  Google Scholar 

  33. S. C. Harvey,M. Prabhakaran, B. Mao, and J. A.McCammon. Phenylanine transfer RNA: Molecular dynamics simulation. Science, 223:1189–1191, 1984.

    Article  Google Scholar 

  34. S. C. Harvey, R. K.-Z. Tan, and T. E. Cheatham, III. The flying ice cube: Ve- locity rescaling in molecular dynamics leads to violation of energy equipartition. . Comput. Chem., 19:726–740, 1998.

    Google Scholar 

  35. W. L. Jorgensen and J. Tirado-Rives. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. SA, 102:6665–6670, 2005.

    Article  Google Scholar 

  36. J. Khandogin and D. M. York. Quantum mechanical characterization of nucleic acids in solution: A linear-scaling study of charge fluctuations in DNA and RNA. . Phys. Chem. B, 106:7693–7703, 2002.

    Google Scholar 

  37. eferences [660] D. K. Klimov and D. Thirumalai. Stretching single-domain proteins: Phase di- agram and kinetics of force-induced unfolding. Proc. Natl. Acad. Sci. USA, 96:6166–6170, 1999.

    Google Scholar 

  38. A. Korostelev, R. Bertram, and M. S. Chapman. Simulated-annealing real-space refinement as a tool in model building. Acta Cryst., D58:761–767, 2002.

    Google Scholar 

  39. N. B. Leontis, R. B. Altman, H. M. Berman, S. E. Brenner, J. W. Brown, D. R. ngelke, S. C. Harvey, S. R. Holbrook, F. Jossinet, S. E. Lewis, F. Major, D. H. athews, J. Richardson, J. R. Williamson, and E. Westhof. The RNA Ontology Consortium: An open invitation to the RNA community. RNA, 12:533–541, 2006.

    Google Scholar 

  40. C. Levinthal. Are there pathways for protein folding? J. Chim. Physique, 65:44–45, 1969.

    Google Scholar 

  41. M. Levitt and S. Lifson. Refinement of protein conformations using a macromolec- ular energy minimization procedure. J. Mol. Biol., 46:269–279, 1969.

    Article  Google Scholar 

  42. H. Li, W. X. Li, and S. W. Ding. Induction and suppression of RNA silencing by an animal virus. Science, 296:1319–1321, 2002.

    Article  Google Scholar 

  43. A. Machado-Lima, H.A. del Portillo, and A.M. Durham. Computational methods in noncoding RNA research. J. Math. Biol., 56:15–49, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. D. MacKerell, Jr. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem., 25:1584–1604, 2004.

    Article  Google Scholar 

  45. A. D. MacKerell, Jr., M. Feig, and C. L. Brooks, III. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum me- chanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem., 25:1400–1415, 2004.

    Article  Google Scholar 

  46. A. D. MacKerell, Jr., M. Feig, and C. L. Brooks, III. Improved treatment of the protein backbone in empirical force fields. J. Amer. Chem. Soc., 126:698–699, 2004.

    Article  Google Scholar 

  47. G. S. Manning, K. K. Ebralidse, A. D. Mirzabekov, and A. Rich. An estimate of the extent of folding of nucleosomal DNA by laterally asymmetric neutralization of phosphate groups. J. Biomol. Struct. Dynam., 6:877–889, 1989.

    Article  Google Scholar 

  48. L. Naldini. A comeback for gene therapy. Science, 326:805–806, 2009.

    Google Scholar 

  49. X. Nassif. A furtive pathogen revealed. Science, 287:1767–1768, 2000.

    Google Scholar 

  50. A. Nicholls and B. Honig. A rapid finite difference algorithm, utilizing succes- sive over-relaxation to solve the Poisson-Boltzmann equation. J. Comput. Chem., 12:435–445, 1991.

    Article  Google Scholar 

  51. W. K. Olson. How flexible is the furanose ring? 2. an updated potential energy estimate. J. Amer. Chem. Soc., 104:278–286, 1982.

    Google Scholar 

  52. W. K. Olson, M. S. Babcock, A. Gorin, G.-H. Liu, N. L. Markey, J. A. Martino, S. C. Pedersen, A. R. Srinivasan, I. Tobias, T. P. Westcott, and P. Zhang. Flexing and folding of double helical DNA. Biol. Chem., 55:7–29, 1995.

    Google Scholar 

  53. J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes. Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem., 48:545–600, 1997.

    Article  Google Scholar 

  54. M. B. Pepys, J. Herbert, W. L. Hutchinson, G. A. Tennent, H. J. Lachmann, J. R. Gallimore, L. B. Lovat, T. Bartfai, A. Alanine, C. Hertel, T. Hoffmann, R. Jakob-Roetne, R. D. Norcross, J. A. Kemp, K. Yamamura, M. Suzuki, G. W. aylor, S. Murray, D. Thompson, A. Purvis, S. Kolstoe, S. P. Wood, and P. N. awkins. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature, 417:254–259, 2002.

    Google Scholar 

  55. A. Peracchi. Prospects for antiviral ribozymes and deoxyribozymes. Rev. Med. irol., 14:47–64, 2004.

    Article  Google Scholar 

  56. D. J. Price and C. L. Brooks, III. Modern protein force fields behave comparably in molecular dynamics simulations. J. Comput. Chem., 23:1045–1057, 2002.

    Article  Google Scholar 

  57. M. Ptashne. How gene activators work. Sci. Amer., 260:41–47, 1989.

    Google Scholar 

  58. M. Rueda, P. Chacon, andM. Orozco. Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. Structure, 15:565–575, 2007.

    Google Scholar 

  59. J. A. Schellman and S. C. Harvey. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys. Chem., 55:95–114, 1995.

    Article  Google Scholar 

  60. T. Schlick. Pursuing Laplace’s vision on modern computers. In J. P. Mesirov, K. Schulten, and D. W. Sumners, editors, Mathematical Applications to Biomo- lecular Structure and Dynamics, volume 82 of IMA Volumes in Mathematics and Its Applications, pages 219–247, New York, NY, 1996. Springer-Verlag.

    Google Scholar 

  61. T. Schlick. Engineering teams up with computer-simulation and visualization tools to probe biomolecular mechanisms. Biophys. J., 85:1, 2003.

    Article  Google Scholar 

  62. T. Schlick. The critical collaboration between art and science: Applying an ex- periment on a bird in an air pump to the ramifications of genomics on society. eonardo, 38:323–329, 2005.

    Google Scholar 

  63. T. Schlick. From macroscopic to mesoscopic models of chromatin folding. In J. Fish, editor, Bridging The Scales in Science in Engineering, pages 514–535. xford University Press, New York, NY, 2009.

    Google Scholar 

  64. E. A. Schultes and D. B. Bartel. One sequence, two ribozymes: Implications for the emergence of new ribozyme folds. Science, 289:448–452, 2000.

    Article  Google Scholar 

  65. M. R. Scott, R. Will, J. Ironside, H.-Oanh B. Nguyen, P. Tremblay, S. J. DeArmond, and S. B. Prusiner. Compelling transgenetic evidence for trans- mission of bovine spongiform encephalopathy prions to humans. Proc. Natl. Acad. ci. USA, 96:15137–15142, 1999.

    Google Scholar 

  66. M. Shirts and V. Pande. Screen savers of the world unite! Science, 290:1903–1904, 2000.

    Article  Google Scholar 

  67. J. C. Simo and N. Tarnow. The discrete energy-momentum method. Conserv- ing algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys., 43:757–793, 1992.

    MathSciNet  MATH  Google Scholar 

  68. D. Sprous and S. C. Harvey. Action at a distance in supercoiled DNA: Effects of sequences on slither, branching and intermolecular concentration. Biophys. J., 70:1893–1908, 1996.

    Article  Google Scholar 

  69. D. Sprous, M. A. Young, and D. L. Beveridge. Molecular Dynamics Studies of Axis Bending in d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5): Effects of Sequence Polarity on DNA Curvature. J. Mol. Biol., 285:1623–1632, 1999.

    Article  Google Scholar 

  70. E. Vanden-Eijnden, M. Venturoli, G. Ciccotti, and R. Elber. On the assumptions underlying milestoning. J. Chem. Phys., 129:174102, 2008.

    Article  Google Scholar 

  71. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, and Jr. A. D. MacKerell. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 2009. ublished online July 2, 2009; DOI 10.1002/jcc.

    Google Scholar 

  72. Y. N. Vorobjev and J. Hermans. ES/IS: Estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model. Biophys. Chem., 78:195–205, 1999.

    Article  Google Scholar 

  73. R. C.Wade, B.A. Luty, E. Demchuk, J. D. Madura, M. E. Davis, J. M. Briggs, and J. A. McCammon. Simulation of enzyme-substrate encounter with gated active sites. Struct. Biol., 1:65–69, 1994.

    Article  Google Scholar 

  74. A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. M. Olson. lectrostatic basis for enzyme catalysis. Chem. Rev., 106:3210–3235, 2006.

    Article  Google Scholar 

  75. M. Watanabe and M. Karplus. Simulations of macromolecules by multiple time- step methods. J. Phys. Chem., 99:5680–5697, 1995.

    Article  Google Scholar 

  76. M.S. Waterman and T.F. Smith. RNA secondary structure: A complete mathemat- ical analysis. Math. Biosci., 42:257–266, 1978.

    Article  MATH  Google Scholar 

  77. R. H. Waterston, E. S. Lander, and J. E. Sulston. On the sequencing of the human genome. Proc. Natl. Acad. Sci. USA, 99:3712–3716, 2002.

    Article  Google Scholar 

  78. B. T. Wimberly, D. E. Brodersen, W. M. Clemons Jr., R. J. Morgan-Warren, A. P. Carter, C. Vonrhein, T. Hartsch, and V. Ramakrishnan. Structure of the 30S ribosomal subunit. Nature, 407:327–339, 2000.

    Article  Google Scholar 

  79. H. Yamakawa. Modern Theory of Polymer Solutions. Harper and Row Publishers, New York, NY, 1971.

    Google Scholar 

  80. T. Yoda, Y. Sugita, and Y. Okamoto. Secondary-structure preferences of force fields for proteins evaluated by generalized-ensemble simulations. Chem. Phys., 307:269–283, 2004.

    Article  Google Scholar 

  81. Y. Yonetani, Y. Maruyama, F. Hirata, and H. Kono. Comparison of DNA hydration patterns obtained using two distinct computational methods, molecular dynam- ics simulation and three-dimensional reference interactions site model theory. . Chem. Phys., 128:185102, 2008.

    Google Scholar 

  82. D. M. York, T.-S. Lee, and W. Yang. Parameterization and efficient implemen- tation of a solvent model for linear-scaling semiempirical quantum-mechanical calculations of biological macromolecules. Chem. Phys. Lett., 263:297–304, 1996.

    Article  Google Scholar 

  83. D. M. York, W. Yang, H. Lee, T. Darden, and L. G. Pederson. Toward the accurate modeling of DNA: The importance of long-range electrostatics. J. Amer. Chem. oc., 117:5001–5002, 1995.

    Article  Google Scholar 

  84. eferences [1441] Q. Zhang, D. Beard,, and T. Schlick. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DiSCO) algorithm. J. Comput. Chem., 24:2063–2074, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Schlick .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schlick, T. (2010). Nucleic Acids Structure Minitutorial. In: Molecular Modeling and Simulation: An Interdisciplinary Guide. Interdisciplinary Applied Mathematics, vol 21. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6351-2_5

Download citation

Publish with us

Policies and ethics