Protein Structure Hierarchy

  • Tamar Schlick
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)


The complexity of protein structures requires a description of their structural components. This chapter describes the elements of protein secondary structure — regular local structural patterns — such as helices, sheets, turns, and loops. Helices and sheets tend to fall into specific regions in the {ϕ, ψ} space of the Ramachandran plot (see Figures 28 and 29). The corresponding width and shape of each region reflects the spread of that motif as found in proteins.


Fatty Acid Binding Protein Quaternary Structure Secondary Structural Element Ramachandran Plot Tomato Bushy Stunt Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 47.
    A. Andreeva, D. Howorth, S. E. Brenner, T. J. P. Hubbard, C. Chothia, and A. G. Murzin. SCOP database in 2004: Refinements integrate structure and sequence family data. Nucl. Acids Res., 32:D226–D229, 2004.CrossRefGoogle Scholar
  2. 48.
    A. Andreeva, D. Howorth, J.-M. Chandonia, S. E. Brenner, T. J. P. Hubbard, C. Chothia, and A. G. Murzin. Data growth and its impact on the SCOP database: New developments. Nucl. Acids Res., 36:D419–D425, 2008.CrossRefGoogle Scholar
  3. 85.
    N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science, 289:905–920, 2000.Google Scholar
  4. 87.
    L. Banci, W. Baumeister, U. Heinemann, G. Schneider, I. Silman, D. I Stuart, and J. L. Sussman. An idea whose time has come. [A response to an idea whose time has gone by G. A. Petsko]. Genome Biol., 8:107, 2007.Google Scholar
  5. 115.
    J. Bella, B. Brodsky, and H.M. Berman. Hydration structure of a collagen peptide. tructure, 3:893–906, 1995.Google Scholar
  6. 157.
    J. U. Bowie, R. L¨uthy, and D. Eisenberg. A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253:164–170, 1991.Google Scholar
  7. 168.
    S. E. Brenner, C. Chothia, and T. J. P. Hubbard. Population statistics of pro- tein structures: Lessons from structural classifications. Curr. Opin. Struct. Biol., 7:369–376, 1997.CrossRefGoogle Scholar
  8. 171.
    R. Brimacombe. The bacterial ribosome at atomic resolution. Structure, 8:R195–R200, 2000.CrossRefGoogle Scholar
  9. 214.
    J.-M. Chandonia and S. E. Brenner. The impact of structural genomics: Eexpecta- tions and outcomes. Science, 311:347–351, 2006.CrossRefGoogle Scholar
  10. 237.
    C. Chothia. One thousand families for the molecular biologist. Nature, 357:543– 544, 1992.CrossRefGoogle Scholar
  11. 238.
    C. Chothia, T. Hubbard, S. Brenner, H. Barns, and A. Murzin. Protein folds in the all-β and all-α classes. Ann. Rev. Biophys. Biomol. Struc., 26:597–627, 1997.CrossRefGoogle Scholar
  12. 262.
    L. Lo Conte, S. E. Brenner, T. J. P. Hubbard, C. Chothia, and A. G. Murzin. COP database in 2002: Refinements accommodate structural genomics. Nucl. cids Res., 30:264–267, 2002.Google Scholar
  13. 266.
    A. F. W. Coulson and J. Moult. A unifold, mesofold, and superfold model of protein fold use. Proteins: Struc. Func. Gen., 46:61–71, 2002.CrossRefGoogle Scholar
  14. 419.
    A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear optimization. SIAM Rev., 44:525–597, 2002.MathSciNetMATHCrossRefGoogle Scholar
  15. 484.
    A. Griewank and G. F. Corliss, editors. Automatic Differentiation of Algorithms: Theory, Implementation, and Applications. SIAM, Philadelphia, PA, 1991.Google Scholar
  16. 516.
    T. E. Haran, J. D. Kahn, and D. M. Crothers. Sequence elements responsible for DNA curvature. J. Mol. Biol., 244:135–143, 1994.CrossRefGoogle Scholar
  17. 560.
    eferences [558] S. R. Holbrook and S.-H. Kim. RNA crystallography. Biopolymers, 44:3–21, 1997.Google Scholar
  18. 562.
    L. Holm and C. Sander. Mapping the protein universe. Science, 273:595–602, 1996.Google Scholar
  19. 616.
    S. O´. Jo´nsdo´ttir and K. Rasmussen. The consistent force field. part 6: an optimized set of potential energy functions for primary amines. New J. Chem., 24:243–247, 2000.Google Scholar
  20. 680.
    K. M. Kosikov, A. A. Gorin, V. B. Zhurkin, and W. K. Olson. DNA stretching and compression: Large-scale simulations of double helical structures. J. Mol. Biol., 289:1301–1326, 1999.CrossRefGoogle Scholar
  21. 710.
    S.Y. Le, R. Nussinov, and J. Maizel. Tree graphs of RNA secondary structures and their comparisons. Comput. Biomed. Res., 22:461–473, 1989.CrossRefGoogle Scholar
  22. 780.
    H. Liu, Y. Zhang, and W. Yang. How is the active-site of enolase organized to achieve overall efficiency in catalyzing a two step reaction. J. Amer. Chem. Soc., 122:6560–6570, 2000.CrossRefGoogle Scholar
  23. 881.
    P. M. Morse. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev., 34:57–64, 1929.MATHGoogle Scholar
  24. 887.
    K. B. Mullis. Dancing Naked in the Mind Field. Pantheon Books, New York, NY, 1998.Google Scholar
  25. 952.
    J. N. Onuchic. Contacting the protein folding funnel with NMR. Proc. Natl. Acad. ci. USA, 94:7129–7131, 1997.CrossRefGoogle Scholar
  26. 993.
    O. Perisic and T. Schlick. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes. Phys. Chem. Chem. Phys., 11:10729–10737, 2009.CrossRefGoogle Scholar
  27. 1085.
    W. Saenger. Principles of Nucleic Acid Structure. Springer Advanced Texts in Chemistry. Springer-Verlag, New York, NY, 1984.Google Scholar
  28. 1135.
    T. Schlick and M. L. Overton. A powerful truncated Newton method for potential energy functions. J. Comput. Chem., 8:1025–1039, 1987.MathSciNetCrossRefGoogle Scholar
  29. 1259.
    W. H. Taylor and K. Lin. A tangled problem. Nature, 421:25, 2002.CrossRefGoogle Scholar
  30. 1340.
    W. Wang, O. Donini, C. M. Reyes, and P. A. Kollman. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein- ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Ann. ev. Biophys. Biomol. Struc., 30:211–243, 2001.CrossRefGoogle Scholar
  31. 1371.
    T. P.Westcott, I. Tobias, and W. K. Olson. Elasticity theory and numerical analysis of DNA supercoiling: An application to DNA looping. J. Phys. Chem., 99:17926– 317935, 1995.CrossRefGoogle Scholar
  32. 1379.
    eferences [1374] J. R. Williamson. Small subunit, big science. Nature, 407:306–307, 2000.Google Scholar
  33. 1434.
    R. Zahn, A. Liu, T. L¨uhrs, R. Riek, C. von Schroetter, F. L´opez Garcia,M. Billeter, L. Calzolai, G. Wider, and Kurt W¨uthrich. NMR solution structure of the human prion protein. Proc. Natl. Acad. Sci. USA, 97:145–150, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations