Biomolecular Structure and Modeling: Problem and Application Perspective

  • Tamar Schlick
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)


The experimental progress described in the previous chapter has been accompanied by an increasing desire to relate the complex three-dimensional (3D) shapes of biomolecules to their biological functions and interactions with other molecular systems. Structural biology, computational biology, genomics, proteomics, bioinformatics, chemoinformatics, and others are natural partner disciplines in such endeavors.


Gene Therapy Prion Protein Nucleoside Analogue Prion Disease Bovine Spongiform Encephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 9.
    A. Aguzzi. Prions and antiprions. Biol. Chem., 378:1393–1395, 1997.Google Scholar
  2. 10.
    A. Aguzzi, F. Montrasio, and P. S. Kaeser. Prions: Health scare and biological challenge. Nature Rev. Mol. Cell Biol., 2:118–126, 2001.CrossRefGoogle Scholar
  3. 14.
    A. Aiuti, F. Cattaneo, S. Galimberti, U. Benninghoff, B. Cassani, L. Callegaro, S. Scaramuzza, G. Andolfi, M. Mirolo, I. Brigida, A. Tabucchi, F. Carlucci, M. Eibl, M. Aker, S. Slavin, H. Al-Mousa, A. Al Ghonaium, A. Ferster, A. Duppenthaler, L. Notarangelo, U. Wintergerst, R. Buckley, M. Bregni, S. Marktel, M. Valsecchi, P. Rossi, F. Ciceri, R. Miniero, C. Bordignon, and M. Roncarolo. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. New Engl. J. Med., 360:447–458, 2009.CrossRefGoogle Scholar
  4. 16.
    B. Al-Lazikani, J. Jung, Z. Xiang, and B. Honig. Protein structure prediction. Curr.Opin. Struct. Biol., 5:51–56, 2001.Google Scholar
  5. 39.
    A. Amir-Aslani. Toxicogenomic predictive modeling: Emerging opportunities for more efficient drug discovery and development. Tech. Forecast. Soc. Change, 75:905–932, 2008.CrossRefGoogle Scholar
  6. 79.
    D. Baker and A. Sali. Protein structure prediction and structural genomics. Science, 294:93–96, 2001.CrossRefGoogle Scholar
  7. 84.
    J. Balzarini and L. V Damme. Microbicide drug candidates to prevent HIV infection. The Lancet, 369:787–797, 2007.Google Scholar
  8. 87.
    L. Banci, W. Baumeister, U. Heinemann, G. Schneider, I. Silman, D. I Stuart, and J. L. Sussman. An idea whose time has come. [A response to an idea whose time has gone by G. A. Petsko]. Genome Biol., 8:107, 2007.Google Scholar
  9. 91.
    D. Barouch. Challenges in the development of an HIV-1 vaccine. Nature, 455: 613–619, 2008.CrossRefGoogle Scholar
  10. 111.
    O. M. Becker, D. S. Dhanoa, Y. Marantz, D. Chen, S. Shacham, S. Cheruku, A. Heifetz, P. Mohanty, M. Fichman, and A. Sharadendu. An integrated in sil- ico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J. Med. hem., 49:3116–3135, 2006.Google Scholar
  11. 121.
    H. J. C. Berendsen. A glimpse of the holy grail. Science, 282:642–643, 1998.CrossRefGoogle Scholar
  12. 149.
    R. Bonneau, J. Tsai, I. Ruczinski, and D. Baker. Functional inferences from blind ab initio protein structure predictions. J. Struc. Biol., 134:186–190, 2001.CrossRefGoogle Scholar
  13. 160.
    D. B. Boyd. Rational drug design: Controlling the size of the haystack. Mod. Drug Dis., 1:41–47, 1998.Google Scholar
  14. 161.
    S. F. Brady, K. J. Stauffer, W. C. Lumma, G. M. Smith, H. G. Ramjit, S. D. ewis, B. J. Lucas, S. J. Gardell, E. A. Lyle, S. D. Appleby, J. J. Cook, M. A. Holahan, M. T. Stranieri, J. J. Lynch, Jr., J. H. Lin, I.-W. Chen, K. Vastag, A. M. Naylor-Olsen, and J. P. Vacca. Discovery and development of the novel potent orally active thrombin inhibitor N-(9-Hydroxy-9-fluorenecarboxy)prolyl trans-4-Aminocyclohexylmethyl amide (L-372,460): Coapplication of structure- based design and rapid multiple analogue synthesis on solid support. J. Med. hem., 41(3):401–406, 1998.Google Scholar
  15. 167.
    S. E. Brenner. A tour of structural genomics. Nat. Genet., 2:801–809, 2001.Google Scholar
  16. 179.
    C. L. Brooks, III, J. N. Onuchic, and D. J. Wales. Statistical thermodynamics: Taking a walk on a landscape. Science, 293:612–613, 2001.CrossRefGoogle Scholar
  17. 183.
    M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N. Taddei, G. Ramponi, C. M. Dobson, and M. Stefani. Inherent toxicity of aggregates im- plies a common mechanism for protein misfolding diseases. Nature, 416:507–511, 2002.CrossRefGoogle Scholar
  18. 191.
    E. C. Butcher, E. L. Berg, and E. J. Kunkel. Systems biology in drug discovery. at. Biotech., 22:1253–1259, 2004.Google Scholar
  19. 205.
    L. Castagnoli, M. Scarpa, M. Kokkinidis, D.W. Banner, D. Tsernoglou, and G. Cesareni. Genetic and structural analysis of the CoIE1 Rop (Rom) protein. mbo. J., 8:621–629, 1989.Google Scholar
  20. 208.
    M. Cavazzana-Calvo and A. Fischer. Gene therapy for severe combined immun- odeficiency: Are we there yet? J. Clin. Inves., 117:1456–1465, 2007.CrossRefGoogle Scholar
  21. 212.
    M. R. Chance, A. R. Bresnick, S. K. Burley, J.-S. Jiang, C. D. Lima, A. Sali, S. C. Almo, J. B. Bonanno, J. A. Buglino, S. Boulton, H. Chen, N. Eswar, G. He, R. Huang, V. Ilyin, L. McMahan, U. Pieper, S. Ray, M. Vidal, and L. K. Wang. tructural genomics: A pipeline for providing structures for the biologist. Prot. ci., 11:723–738, 2002.CrossRefGoogle Scholar
  22. 214.
    J.-M. Chandonia and S. E. Brenner. The impact of structural genomics: Eexpecta- tions and outcomes. Science, 311:347–351, 2006.CrossRefGoogle Scholar
  23. 227.
    Z. Chen, Y. Li, E. Chen, D. L. Hall, P. L. Darke, C. Culberson, J. A. Shafer, and L. C. Kuo. Crystal structure at 1.9-A resolution of human immunodeficiency (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. J. Biol. Chem., 269:26344–26348, 1994.Google Scholar
  24. 251.
    F. E. Cohen. Protein misfolding and prion diseases. J. Mol. Biol., 293:313–320, 1999.CrossRefGoogle Scholar
  25. 253.
    M. S. Cohen, N. Hellmann, J. A. Levy, K. DeCook, and J. Lange. The spread, treatment, and prevention of HIV-1: Evolution of a global pandemic. J. Clin. Inves., 118:1244–1254, 2008.CrossRefGoogle Scholar
  26. 257.
    F. S. Collins. Opportunities for research and NIH. Science, 327:36–37, 2010.Google Scholar
  27. 278.
    P. Csermely, V. Agoston, and S. Pongor. The efficiency of multi-target drugs: The network approach might help drug design. Trends in Pharm. Sci., 26:178–182, 2005.CrossRefGoogle Scholar
  28. 281.
    S. Dalal, S. Balasubramanian, and L. Regan. Protein alchemy: Changing β-sheet into α-helix. Nature Struc. Biol., 4:548–552, 1997.CrossRefGoogle Scholar
  29. 285.
    X. Daura, B. Jaun, D. Seebach, W. F. Van Gunsteren, and A. Mark. Reversible peptide folding in solution by molecular dynamics simulation. J. Mol. Biol., 280:925–932, 1998.CrossRefGoogle Scholar
  30. 313.
    K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, and H. S. han. Principles of protein folding — A perspective from simple exact models. rotein Science, 4:561–602, 1995.Google Scholar
  31. 314.
    K. A. Dill and H. S. Chan. From Levinthal to pathways to funnels. Nature Struc. iol., 4:10–19, 1997.CrossRefGoogle Scholar
  32. 318.
    A. R. Dinner and M. Karplus. Comment on the communication “The key to solving the protein-folding problem lies in an accurate description of the denatured state” by van Gunsteren et al. Angew. Chem. Int. Ed., 40:4615–4616, 2001.CrossRefGoogle Scholar
  33. 325.
    C. M. Dobson. Getting out of shape. Nature, 418:729–730, 2002.Google Scholar
  34. 326.
    C. M. Dobson. Protein folding and misfolding: From atoms to organisms. In A. H. Zewail, editor, Physical Biology: From Atoms to Medicine, pages 289–335. mperial College Press, London, UK, 2008.Google Scholar
  35. 329.
    A. J. Dooley, N. Shindo, B. Taggart, J. G. Park, and Y. P. Pang. From genome to drug lead: Identification of a small-molecule inhibitor of the SARS virus. Bioorg. ed. Chem. Lett., 16:830–833, 2006.CrossRefGoogle Scholar
  36. 338.
    R. O. Dror, D. H. Arlow, D. W. Borhani, M.. Jensen, S. Piana, and D. E. Shaw. dentification of two distinct inactive conformations of the 2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl. Acad. Sci. USA., 106:4689–4694, 2009.Google Scholar
  37. 345.
    S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. hys. Lett. B, 195:216–222, 1987.Google Scholar
  38. 346.
    H. J. Dyson and P. E. Wright. Insights into protein folding from NMR. Annu. Rev. hys. Chem., 47:369–395, 1996.CrossRefGoogle Scholar
  39. 362.
    A. Engel. New frontiers in high-resolution electron microscopy. In T. Schwede and M. Peitsch, editors, Computational Structural Biology. Methods and Applications, pages 623–654. World Scientific, Singapore, 2008.Google Scholar
  40. 373.
    nonbonded force field parameters for organic compounds. J. Phys. Chem. B, 103:6998–7014, 1999.Google Scholar
  41. 375.
    C. Ezzell. Proteins rule. Sci. Amer., 286:40–47, 2002.Google Scholar
  42. 387.
    M. O. Fenley, K. Chua, A. H. Boschitsch, and W. K. Olson. A fast adap- tive multipole method for computation of electrostatic energy in simulations of polyelectrolyte DNA. J. Comput. Chem., 17:976–991, 1996.CrossRefGoogle Scholar
  43. 393.
    A. R. Ferré-D’Amaré, K. Zhou, and J. A. Doudna. Crystal structure of a hepatitis delta virus ribozyme. Nature, 395:567–574, 1998.Google Scholar
  44. 395.
    M. Ferrer, T. A. Kapoor, T. Strassmaier, W. Weissenhorn, J. J. Skehel, D. Oprian, S. L. Schreiber, D. C.Wiley, and S. C. Harrison. Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nature Struc. Biol., 6:953–960, 1999.CrossRefGoogle Scholar
  45. 396.
    A. Fersht. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding.W. H. Freeman and Company, New York, NY, 1999.Google Scholar
  46. 430.
    D. Frenkel and B. Smit. Understanding Molecular Simulations. From Algorithms to Applications. Academic Press, San Diego, CA, second edition, 2002.Google Scholar
  47. 434.
    F. B. Fuller. Decomposition of the linking number of a closed ribbon: A problem from molecular biology. Proc. Natl. Acad. Sci. USA, 75:3557–3561, 1978.MathSciNetMATHCrossRefGoogle Scholar
  48. 436.
    R. C. Gallo. A reflection on HIV/AIDS research after 25 years. Retrovirology, 3:72, 2006.CrossRefGoogle Scholar
  49. 440.
    H.H. Gan, D. Fera, J. Zorn, M. Tang, N. Shiffieldrim, U. Laserson, N. Kim, and T. Schlick. RAG: RNA-As-Graphics database – concepts, analysis, and features. ioinformatics, 20:1285–1291, 2004.Google Scholar
  50. 453.
    A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug dis- covery. 1. A qualitative and quantitative characterization of known drug databases. . Comb. Chem., 1:55–68, 1999.Google Scholar
  51. 505.
    M. Hamada, K. Tsuda, T. Kudo, T. Kin, and K. Asai. Mining frequent stem patterns from unaligned RNA sequences. Bioinformatics, 22:2480–2487, 2006.CrossRefGoogle Scholar
  52. 507.
    P. Hammarstr¨om, F. Schneider, and J. W. Kelly. Trans-suppression of misfolding in an amyloid disease. Science, 293:2459–2462, 2001.Google Scholar
  53. 509.
    M. Hann and R. Green. Cheminformatics – A new name for an old problem? Curr. pin. Chem. Biol., 3:379–383, 1999.CrossRefGoogle Scholar
  54. 519.
    H. S. Harned and B. B. Owen. The Physical Chemistry of Electrolytic Solutions. merican Chemical Society Monograph Series. Reinhold Publishing Corporation, New York, NY, second edition, 1950.Google Scholar
  55. 529.
    M. A. El Hassan and C. R. Calladine. Conformational characteristics of DNA: Empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Phil. Trans. Math. Phys. Engin. Sci., 355:43–100, 1997.MATHCrossRefGoogle Scholar
  56. 536.
    T. Haynes, D. Knisley, E. Seier, and Y. Zou. A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC Bioinformatics, 7:108, 2006.CrossRefGoogle Scholar
  57. 564.
    S. K. Holmgren, K. M. Taylor, L. E. Bretscher, and R. T. Raines. Code for collagen’s stability deciphered. Nature, 392, 1998.Google Scholar
  58. 570.
    V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling. omparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct., Funct., Bioinf., 65:712–725, 2006.Google Scholar
  59. 571.
    M. P. Horvath and S. C. Schultz. DNA G-quartets in a 1.86 A resolution structure of an Oxytricha Nova telomeric protein-DNA complex. J. Mol. Biol., 310:367–377, 2001.Google Scholar
  60. 576.
    H. Hu and W. Yang. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes. J. Mol. Struct.: THEOCHEM, 898:17–30, 2009.Google Scholar
  61. 602.
    L. Jaeger, E. Westhof, and N. B. Leontis. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucl. Acids Res., 29:455–463, 2001.CrossRefGoogle Scholar
  62. 609.
    H. Jian. A Combined Wormlike-Chain and Bead Model for Dynamic Simulations of Long DNA. PhD thesis, New York University, Department of Physics, New York, NY, October 1997.Google Scholar
  63. 611.
    L. Jiang, E. A. Althoff, F. R. Clemente, L. Doyle, D. R¨othlisberger, A. Zanghellini, J. L. Gallaher, J. L. Betker, F. Tanaka, C. F. Barbas III, D. Hilvert, K. N. Houk, B. L. toddard, and D. Baker. De novo computational design of retro-aldol enzymes. cience, 319:1387–1391, 2008.Google Scholar
  64. 612.
    S. Jo, M. Vargyas, J. Vasko-Szedlar, B. Roux, and W. Im. PBEQ-Solver for on- line visualization of electrostatic potential of biomolecules. Nucl. Acids Res., 36:W270–W275, 2008.CrossRefGoogle Scholar
  65. 624.
    H. F. Judson. The Eighth Day of Creation. Makers of the Revolution in Biology. old Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1996. (Expanded edition).Google Scholar
  66. 635.
    Y. Karklin, R.F. Meraz, and S.R. Holbrook. Classification of non-coding RNA using graph representations of secondary structure. Pac. Symp. Biocomput., pages 4–15, 2005.Google Scholar
  67. 637.
    R. M. Karp. Mathematical challenges from genomics and molecular biology. otices Amer. Math. Soc., 49:544–553, 2002.Google Scholar
  68. 649.
    Y. C. Kim and G. Hummer. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J. Mol. Biol., 375:1416–1433, 2008.CrossRefGoogle Scholar
  69. 660.
    J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. truct. Biol., 19:120–127, 2009.CrossRefGoogle Scholar
  70. 661.
    D. K. Klimov and D. Thirumalai. Viscosity dependence of the folding rates of proteins. Phys. Rev. Lett., 79:317–320, 1997.CrossRefGoogle Scholar
  71. 672.
    J. H. Konnert and W. A. Hendrickson. A restrained-parameter thermal-factor refinement procedure. Acta Crystallogr., A36:344–350, 1980.Google Scholar
  72. 683.
    M. Kr¨oger, A. Alba-Perez, M. Laso, and H. C. O¨ ttinger. Variance reduced Brownian simulation of a bead-spring chain under steady shear flow considering hydrodynamic interaction effects. J. Chem. Phys., 113:4767–4773, 2000.Google Scholar
  73. 686.
    R. Kubo. The fluctuation-dissipation theorem. Rep. Prog. Phys., 29:255–284, 1966.Google Scholar
  74. 687.
    W. K¨uhlbrandt and K. A. Williams. Analysis of macromolecular structure and dynamics by electron cryo-microscopy. Curr. Opin. Chem. Biol., 3:537–543, 1999.Google Scholar
  75. 695.
    C. G. Lambert, T. A. Darden, and J. A. Board, Jr. A multipole-based algorithm for efficient calculation of forces and potentials in macroscopic periodic assemblies of particles. J. Comput. Phys., 126:274–285, 1996.MathSciNetMATHCrossRefGoogle Scholar
  76. 700.
    J. Langowski, W. K. Olson, S. C. Pedersen, I. Tobias, and T. Westcott. DNA su- percoiling, localized bending, and thermal fluctuations. Trends Bio. Sci., 21:50, 1996.Google Scholar
  77. 707.
    R. Lavery, K. Zakrzewska, D. Beveridge, T.C. Bishop, D.A. Case, T. Cheatham, S. Dixit, B. Jayaram, F. Lankas, C. Laughton, J. Maddocks, A.Michon, R. Osman, M. Orozco, A. Perez, T. Singh, N. Spackova, and J. Sponer. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucl. Acids Res., 2009. oi:10.1093/nar/gkp834.Google Scholar
  78. 743.
    S. D. Levene, H.-M.Wu, and D.M. Crothers. Bending and flexibility of kinetoplast DNA. Biochemistry, 25:3988–3995, 1986.CrossRefGoogle Scholar
  79. 744.
    I. N. Levine. Quantum Chemistry. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, fourth edition, 1991.Google Scholar
  80. 747.
    M. Levitt. How many base-pairs per turn does DNA have in solution and in chro- matin? Some theoretical calculations. Proc. Natl. Acad. Sci. USA, 75:640–644, 1978.CrossRefGoogle Scholar
  81. 749.
    M. Levitt. The birth of computational structural biology. Nat. Struc. Biol., 8:392–393, 2001.CrossRefGoogle Scholar
  82. 762.
    Z. Li and H. A. Scheraga. Monte Carlo-minimization approach to the multiple- minima problem in protein folding. Proc. Natl. Acad. Sci. USA, 84:6611–6615, 1987.MathSciNetCrossRefGoogle Scholar
  83. 777.
    D. J. Liu and L. A. Day. Pf1 virus structure: Helical coat protein and DNA with paraxial phosphates. Science, 265:671–674, 1994.CrossRefGoogle Scholar
  84. 782.
    X. Liu, K. Fan, and W. Wang. The number of protein folds and their distribution over families in nature. Proteins: Struc. Func. Bioinf., 54:491–499, 2004.CrossRefGoogle Scholar
  85. 791.
    D. G. Luenberger. Linear and Nolinear Programming. Addison Wesley, Reading, Massachusetts, 1984.Google Scholar
  86. 814.
    J. Maddox. Towards the calculation of DNA. Nature, 339:557, 1989.Google Scholar
  87. 861.
    M.Mills and I. Andricioaei. An experimentally guided umbrella sampling protocol for biomolecules. J. Chem. Phys., 129:114101, 2008.CrossRefGoogle Scholar
  88. 867.
    A. D. Mirzabekov and A. Rich. Asymmetric lateral distribution of unshielded phosphate groups in nucleosomal DNA and its role in DNA bending. Proc. Natl. cad. Sci. USA, 76:1118–1121, 1979.CrossRefGoogle Scholar
  89. 880.
    R. T. Morrison and R. N. Boyd. Organic Chemistry. Allyn and Bacon, Inc., Newton, MA, fourth edition, 1983.Google Scholar
  90. 881.
    P. M. Morse. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev., 34:57–64, 1929.MATHGoogle Scholar
  91. 885.
    comparison of AMBER, CHARMM, GROMOS, and OPLS force fields toNMR and infrared experiments. J. Phys. Chem. B, 107:5064–5073, 2003.Google Scholar
  92. 890.
    A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: A structural clas- sification of proteins database for the investigation of sequences and structures. . Mol. Biol., 247:536–540, 1995.Google Scholar
  93. 913.
    L. Nilsson and M. Karplus. Empirical energy functions for energy minimization and dynamics of nucleic acids. J. Comput. Chem., 7:591–616, 1986.CrossRefGoogle Scholar
  94. 933.
    M. Ogihara and A. Ray. DNA computing on a chip. Science, 403:143–144, 2000.Google Scholar
  95. 935.
    Y. Okamoto. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J. Mol. Graph. Mod., 22:425–439, 2004.CrossRefGoogle Scholar
  96. 948.
    W. K. Olson and J. L. Sussman. How flexible is the furanose ring? 1. A comparison of experimental and theoretical studies. J. Amer. Chem. Soc., 104:270–278, 1982.Google Scholar
  97. 949.
    W. K. Olson, T. P. Westcott, J. A. Martino, and G.-H. Liu. Computational stud- ies of spatially constrained DNA chains. In J. P. Mesirov, K. Schulten, and D. W. Sumners, editors, Mathematical Approaches to Biomolecular Structure and Dynamics, volume 82 of IMA Volumes in Mathematics and Its applications, New York, NY, 1996. Springer-Verlag.Google Scholar
  98. 971.
    R.W. Pastor, B. R. Brooks, and A. Szabo. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 65:1409–1419, 1988.CrossRefGoogle Scholar
  99. 983.
    K. Pawlowski, A. Bierzy´nski, and A. Godzik. Structural diversity in a family of homologous proteins. J. Mol. Biol., 258:349–366, 1996.Google Scholar
  100. 993.
    O. Perisic and T. Schlick. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes. Phys. Chem. Chem. Phys., 11:10729–10737, 2009.Google Scholar
  101. 1045.
    J. Ray and G. S. Manning. Counterion and coion distribution functions in the coun- terion condensation theory of polyelectrolytes. Macromolecules, 32:4588–4595, 1999.CrossRefGoogle Scholar
  102. 1054.
    A. Rich. The rise of single-molecule DNA chemistry. Proc. Natl. Acad. Sci. USA, 95:13999–14000, 1998.CrossRefGoogle Scholar
  103. 1066.
    A. D. Rodrigues and J. H. Lin. Screening of drug candidates for their drug–drug interaction potential. Curr. Opin. Chem. Biol., 5:396–401, 2001.CrossRefGoogle Scholar
  104. 1086.
    C. Sagui and T. A. Darden. Molecular dynamics simulations of biomolecules: Long-range electrostatic effects. Ann. Rev. Biophys. Biomol. Struc., 28:155–179, 1999.CrossRefGoogle Scholar
  105. 1087.
    C. Sagui and T. A. Darden. Multigrid methods for classical olecular dynamics simulations of biomolecules. J. Chem. Phys., 114:6578–6591, 2001.CrossRefGoogle Scholar
  106. 1151.
    C. N. Schutz and A. Warshel. What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins: Struc. Func. Gen., 44:400–417, 2001.CrossRefGoogle Scholar
  107. 1170.
    H. M. Senn and W. Thiel. QM/MM methods for biomolecular systems. Angew. hem. Int. Ed., 48:1198–1229, 2009.CrossRefGoogle Scholar
  108. 1180.
    Y. Shi, A. E. Borovik, and J. E. Hearst. Elastic rod model incorporating shear and extension, generalized nonlinear schr¨odinger equations, and novel closed-form solutions for supercoiled DNA. J. Chem. Phys., 103:3166–3183, 1995.CrossRefGoogle Scholar
  109. 1193.
    B. Simon and M. Sattler. De novo structure determination from residual dipolar couplings by NMR spectroscopy. Angew. Chem. Int. Ed., 41:437–440, 2002.CrossRefGoogle Scholar
  110. 1218.
    D. Sprous, W. Zacharias, Z. A. Wood, and S. C. Harvey. Dehydrating agents sharply reduce curvature in DNAs containing A-tracts. Nucl. Acids Res., 23: 1816–1821, 1995.CrossRefGoogle Scholar
  111. 1221.
    A. R. Srinivasan andW. K. Olson. Molecular models of nucleic acid triple helixes. I. PNA and 2_–5_ backbone complexes. J. Amer. Chem. Soc., 120:492–499, 1998.Google Scholar
  112. 1257.
    Y. Tao and W. Zhang. Recent developments in cryo-electron microscopy recon- struction of single particles. Structure, 10:616–622, 2000.Google Scholar
  113. 1270.
    J. R. Tolman. Dipolar couplings as a probe of molecular dynamics and structure in solution. Curr. Opin. Struct. Biol., 11:532–539, 2001.CrossRefGoogle Scholar
  114. 1283.
    M. E. Tuckerman, B. J. Berne, and A. Rossi. Molecular dynamics algorithm for multiple time scales: Systems with disparate masses. J. Chem. Phys., 94: 1465–1469, 1991.CrossRefGoogle Scholar
  115. 1294.
    D. M. F. van Aalten, B. L. deGroot, J. B. C. Findlay, H. J. C. Berendsen, and A. Amadei. A comparison of techniques for calculating protein essential dynamics. . Comput. Chem., 18:169–181, 1997.Google Scholar
  116. 1295.
    M. J. van Dongen, J. F. Doreleijers, G. A. van der Marel, J. H. van Boom, C. W. ilbers, and S. S. Wijmenga. Structure and mechanism of formation of the H-y5 isomer of an intramolecular DNA triple helix. Nat. Struc. Biol., 6:854–859, 1999.Google Scholar
  117. 1316.
    A. V. Vologodskii, S. D. Levene, K. V. Klenin, M. D. Frank-Kamenetskii, and N. R. Cozzarelli. Conformational and thermodynamic properties of supercoiled DNA. J. Mol. Biol., 227:1224–1243, 1992.CrossRefGoogle Scholar
  118. 1325.
    R. ˇ Stefl, T. E. Cheatham, III, N. ˇSpaˇckov´a, E. Fadrn´a, I. Berger, J. Koˇca, and J. ˇSponer. Formation pathways of guanine-quadruplex DNA revealed by molecu- lar dynamics and thermodynamic analysis of substates. Biophys. J., 85:1787–1804, 2003.Google Scholar
  119. 1326.
    R. C.Wade, M. E.Davis, B. A. Luty, J. D.Madura, and J. A. McCammon. Gating of the active site of triose phosphate isomerase: Brownian dynamics simulations of flexible peptide loops in the enzyme. Biophys. J., 64:9–15, 1993.CrossRefGoogle Scholar
  120. 1362.
    M. Weber, S. Kube, L. Wlater, and P. Deuflhard. Stable computational of probability densities for metastable dynamical systems. SIAM Mult. Model. Sim., 6:396–416, 2007.MATHCrossRefGoogle Scholar
  121. 1363.
    Z.Wei, G. Li, and L. Qi. New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems. App. Math. Comput., 179:407–430, 2006.MathSciNetMATHCrossRefGoogle Scholar
  122. 1371.
    T. P.Westcott, I. Tobias, and W. K. Olson. Elasticity theory and numerical analysis of DNA supercoiling: An application to DNA looping. J. Phys. Chem., 99:17926– 317935, 1995.CrossRefGoogle Scholar
  123. 1385.
    R.Wing, H. Drew, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R. E. Dickerson. rystal structure analysis of a complete turn of B-DNA. Nature, 287:755–758, 1980.CrossRefGoogle Scholar
  124. 1391.
    P. G. Wolynes. Recent successes of the energy landscape theory of protein folding and function. Quart. Rev. Biophys., 38:405–410, 2005.CrossRefGoogle Scholar
  125. 1405.
    D. Xie and T. Schlick. A more lenient stopping rule for line search algorithms. pt. Math. Softw., 17:683–700, 2002.Google Scholar
  126. 1406.
    D. Xie, L. R. Scott, and T. Schlick. Analysis of the SHAKE-SOR algorithm for constrained molecular dynamics simulations. Methods and Applications of Analysis, 7(3):577–590, 2000. (Special Issue dedicated to Cathleen Morawetz).Google Scholar
  127. 1429.
    G. Yuan. Modified nonlinear conjugate gradient methods with sufficient descent condition for large-scale optimization problems. Opt. Lett., 3:11–21, 2009. doi: 10.1007/s11590-008-0086-5.MATHCrossRefGoogle Scholar
  128. 1430.
    G. C. Yuan and J. S. Liu. Genomic sequence is highly predictive of local nucleosome depletion. PLoS Comp. Biol., 4:e13, 2008.MathSciNetCrossRefGoogle Scholar
  129. 1447.
    Y. Zhang. Pseudobond Ab Initio QM/MM approach and its applications to enzyme reactions. Theor. Chem. Acc., 116:43–50, 2006.CrossRefGoogle Scholar
  130. 1464.
    D. M. Zuckerman and E. Lyman. A second look at canonical sampling of biomolecules using replica exchange simulation. J. Chem. Theo. Comp., 2:1200–1202, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations