Similarity and Diversity in Chemical Design

  • Tamar Schlick
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)


Following a simple introduction to drug discovery research, this chapter presents some mathematical formulations and approaches to problems involved in chemical database analysis that might interest mathematical/physical scientists. With continued advances in structure determination, genomics, and high-throughput screening and related (more focused) techniques, in silico drug design is playing an important role as never before. Thus, traditional structure-directed library design methods in combination with newer approaches like fragment-based drug design [496, 1447], virtual screening [453, 1179], and system-scale approaches to drug design [236, 278, 649] will form important areas of research.


Singular Value Decomposition Drug Design Chemical Library Chemical Descriptor Distance Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Adams and J. L. Nazareth, editors. Linear and Nonlinear Conjugate Gradient- Related Methods. SIAM, Philadelphia, PA, 1996.Google Scholar
  2. 5.
    D. K. Agrafiotis. Stochastic algorithms for maximizing molecular diversity. J. Chem. Inf. Comput. Sci., 37:841–851, 1997.CrossRefGoogle Scholar
  3. 6.
    D. K. Agrafiotis. Diversity of chemical libraries. In P. von Ragué Schleyer (Editor- in Chief), N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, and H. F. Schaefer, III, editors, Encyclopedia of Computational Chemistry, volume 1, pages 742–761. John Wiley & Sons, West Sussex, England, 1998.Google Scholar
  4. 7.
    D. K. Agrafiotis, V. S. Lobanov, and F. R. Salemme. Combinatorial informatics in the post-genomics era. Nat. Rev. Drug. Disc., 1:337–346, 2002.CrossRefGoogle Scholar
  5. 8.
    D. K. Agrafiotis, J. C. Myslik, and F. R. Salemme. Advances in diversity profiling and combinatorial series design. Mol. Div., 4:1–22, 1999.CrossRefGoogle Scholar
  6. 41.
    L. M. Amzel. Structure-based drug design. Curr. Opin. Biotech., 9:366–369, 1998.Google Scholar
  7. 151.
    S. Borman. Reducing time to drug discovery. Chem. Eng. News, 77:33–48, 1998.CrossRefGoogle Scholar
  8. 159.
    D. B. Boyd. Computer-aided molecular design. In A. Kent (Executive) and C. M. Hall (Administrative), editors, Encyclopedia of Library and Informa- tion Science, volume 59, pages 54–84. Marcel Dekker, New York, NY, 1997. upplement 22.Google Scholar
  9. 198.
    P. R. Caron, M. D. Mullican, R. D. Mashal, K. P. Wilson, M. S. Su, and M. A. urcko. Chemogenomic approaches to drug discovery. Curr. Opin. Chem. Biol., 5:464–470, 2001.Google Scholar
  10. 207.
    T. Caulfield and K. Burgess. Combinatorial chemistry. Focused diversity and diversity of focus. Curr. Opin. Chem. Biol., 5:241–242, 2001.Google Scholar
  11. 236.
    C. H. Cho andM. E. Nuttall. Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases. Expert Opin. Ther. Targets, 6:679–689, 2002.Google Scholar
  12. 254.
    N. C. Cohen, editor. Guidebook on Molecular Modeling in Drug Design. cademic Press, San Diego, CA, 1996.Google Scholar
  13. 263.
    W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinato- rial Optimization. John Wiley & Sons, New York, NY, 1998.Google Scholar
  14. 278.
    P. Csermely, V. Agoston, and S. Pongor. The efficiency of multi-target drugs: The network approach might help drug design. Trends in Pharm. Sci., 26:178–182, 2005.CrossRefGoogle Scholar
  15. 296.
    J.W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.Google Scholar
  16. 322.
    S. L. Dixon and H. O. Villar. Investigation of classification methods for the prediction of activity in diverse chemical libraries. J. Comput.-Aided Mol. Design, 13:533–545, 1999.CrossRefGoogle Scholar
  17. 323.
    C. Djerassi. The Pill, Pygmy Chimps, and Degas’ Horse. The Remarkable Auto- biography of the Award-Winning Scientist Who Synthesized the Birth Control Pill. asic Books, New York, NY, 1992.Google Scholar
  18. 333.
    (Structural Genomics Supplement).Google Scholar
  19. 335.
    H. R. Drew, R. M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura, and R. E. ickerson. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. atl. Acad. Sci. USA, 78:2179–2183, 1981.Google Scholar
  20. 400.
    M. J. Field. A Practical Introduction to the Simulation of Molecular Systems. ambridge University Press, Cambridge, UK, second edition, 2007.Google Scholar
  21. 448.
    B. Garc´ıa-Archilla, J.M. Sanz-Serna, and R.D. Skeel. Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput., 20:930–963, 1998.Google Scholar
  22. 451.
    C. A. Gelfand, G. E. Plum, S. Mielewczyk, D. P. Remeta, and K. J. Breslauer. quantitative method for evaluating the stabilities of nucleic acid complexes. roc. Natl. Acad. Sci. USA, 96:6113–6118, 1999.Google Scholar
  23. 453.
    A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug dis- covery. 1. A qualitative and quantitative characterization of known drug databases. . Comb. Chem., 1:55–68, 1999.Google Scholar
  24. 496.
    J. M. Haile. Molecular Dynamics Simulations: Elementary Methods. John Wiley & Sons, New York, NY, 1992.Google Scholar
  25. 507.
    P. Hammarstr¨om, F. Schneider, and J. W. Kelly. Trans-suppression of misfolding in an amyloid disease. Science, 293:2459–2462, 2001.Google Scholar
  26. 529.
    M. A. El Hassan and C. R. Calladine. Conformational characteristics of DNA: Empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Phil. Trans. Math. Phys. Engin. Sci., 355:43–100, 1997.MATHCrossRefGoogle Scholar
  27. 544.
    D. K. Hendrix, S. E. Brenner, and S. R. Holbrook. RNA structural motifs: building blocks of a modular biomolecule. Q. Rev. Biophys., 38:221–243, 2005.CrossRefGoogle Scholar
  28. 555.
    R. W. Hockney and J. W Eastwood. Computer Simulation Using Particles. cGraw-Hill, New York, NY, 1981.Google Scholar
  29. 582.
    P. H. H¨unenberger and J. A. McCammon. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: A continuum electrostatics study. Biophys. Chem., 78:69–88, 1999.Google Scholar
  30. 588.
    W. Im, D. Beglov, and B. Roux. Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. omput. Phys. Comm., 111:59–75, 1998.MATHGoogle Scholar
  31. 589.
    W. Im, J. Chen, and C. L. Brooks, III. Peptide and protein folding and confor- mational equilibria: Theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models. Adv. Protein Chem., 72:173–197, 2006.CrossRefGoogle Scholar
  32. 590.
    M. Ingelman-Sundberg. Pharmacogenomic biomakers for prediction of severe adverse drug reactions. N. Eng. J. Med., 358:637–639, 2008.CrossRefGoogle Scholar
  33. 591.
    J. Inglese, D. S. Auld, A. Jadhav, R. L. Johnson, A. Simeonov, A. Yasgar, W. Zheng, and C. P. Austin. Quantitative high-throughput screening qHTS: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. USA, 103:11473–11478, 2006.CrossRefGoogle Scholar
  34. 621.
    W. L. Jorgensen and J. Tirado-Rives. Monte Carlo vs. molecular dynamics for conformational sampling. J. Phys. Chem., 100:14508–14513, 1996.Google Scholar
  35. 640.
    J. Khandogin, A. Hu, and D. M. York. Electronic structure properties of sol- vated biomolecules: A quantum approach for macromolecular characterization. . Comput. Chem., 21:1562–1571, 2000.Google Scholar
  36. 649.
    Y. C. Kim and G. Hummer. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J. Mol. Biol., 375:1416–1433, 2008.CrossRefGoogle Scholar
  37. 666.
    P. Koehl and M. Levitt. A brighter future for protein structure prediction. Nature Struc. Biol., 6:108–111, 1999.CrossRefGoogle Scholar
  38. 673.
    M. W. Konrad and J. I Bolonick. Molecular dynamics simulation of DNA stretch- ing is consistent with the tension observed for extension and strand separation and predicts a novel ladder structure. J. Amer. Chem. Soc., 118:10989–10994, 1996.Google Scholar
  39. 677.
    N. Korolev, A. P. Lyubartsev, A. Laaksonen, and L. Nordenski¨old. On the comnpe- tition between water, sodium ions, and spermine in binding to DNA: A molecular dynamics simulation study. Biophys. J., 82:2860–2875, 2002.Google Scholar
  40. 692.
    C. Laing, S. Jung, A. Iqbal, and T. Schlick. Tertiary motifs revealed in analyses of higher-order RNA junctions. J. Mol. Biol., 393:67–82, 2009.CrossRefGoogle Scholar
  41. 709.
    T. Lazaridis and M. Karplus. “New view” of protein folding reconciled with the old through multiple unfolding simulations. Science, 278:1928–1931, 1997.CrossRefGoogle Scholar
  42. 727.
    J. H. Lee, M. D. Canny, A. De Erkenez, D. Krilleke, Y. S. Ng, D. T. Shima, A. Pardi, and F. Jucker. A therapeutic aptamer inhibits angiogenesis by specifi- cally targeting the heparin binding domain of VEGF165. Proc. Natl. Acad. Sci. SA, 102:18902–18907, 2005.CrossRefGoogle Scholar
  43. 728.
    T.-S. Lee, D. M. York, and W. Yang. Linear-scaling semiempirical quantum calculations for macromolecules. J. Chem. Phys., 105:2744–2750, 1996.CrossRefGoogle Scholar
  44. 772.
    E. Lindahl, B. Hess, and D. van der Spoel. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model., 7:306–317, 2001.Google Scholar
  45. 818.
    G. Maisuradze, A. Liwo, and H. Scheraga. Principal component analysis for protein folding dynamics. J. Mol. Biol., 385:312–329, 2009.CrossRefGoogle Scholar
  46. 913.
    L. Nilsson and M. Karplus. Empirical energy functions for energy minimization and dynamics of nucleic acids. J. Comput. Chem., 7:591–616, 1986.CrossRefGoogle Scholar
  47. 977.
    L. Pauling. The Nature of the Chemical Bond. third edition, Cornell University Press, New York, NY, 1960.Google Scholar
  48. 999.
    A. T. Phan, J.-L. Leroy, and M. Guéron. Determination of the residence time of water molecules hydrating B_-DNA and B-DNA, by one-dimensional zero- enhancement nuclear Overhauser effect spectroscopy. J. Mol. Biol., 286:505–519, 1999.Google Scholar
  49. 1001.
    L. Piela, J. Kostrowicki, and H. A. Scheraga. The multiple-minima problem in conformational analysis of molecules. deformation of the potential energy hy- persurface by the diffusion equation method. J. Phys. Chem., 93:3339–3346, 1989.Google Scholar
  50. 1006.
    R. M. Pitzer. The barrier to internal rotation in ethane. Acc. Chem. Res., 16:207–210, 1983.CrossRefGoogle Scholar
  51. 1009.
    R. H. A. Plasterk. RNA silencing: The genome’s immune system. Science, 296:1263–1265, 2002.CrossRefGoogle Scholar
  52. 1061.
    R. A. Robinson and R. H. Stokes. Electrolyte Solutions: The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes. Butterworth & Co., London, England, second edition, 1965.Google Scholar
  53. 1093.
    B. Sandak. Multiscale fast summation of long-range charge and dipolar interac- tions. J. Comput. Chem., 22:717–731, 2001.CrossRefGoogle Scholar
  54. 1121.
    T. Schlick. Molecular-dynamics based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules. F1000 Biol. Rep., 1:51, 2009.Google Scholar
  55. 1122.
    T. Schlick. Monte Carlo, harmonic approximation, and coarse-graining approaches for enhanced sampling of biomolecular structure. F1000 Biol. Rep., 1:48, 2009.Google Scholar
  56. 1174.
    D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossvry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, and S. C. Wang. Anton: A special-purpose machine for molecular dynamics simulation. In Proceedings of the 34th annual international symposium on Computer architecture, pages 1–12, San Diego, CA, 2007. ACM.Google Scholar
  57. 1179.
    M. M. Shi, D. Mehrens, and K. Dacus. Pharmacogenomics: Changing the health care paradigm. Mod. Drug Disc., 4:27–32, 2001.Google Scholar
  58. 1241.
    S. J. Stuart, R. Zhou, and B. J. Berne. Molecular dynamics with multiple time scales: The selection of efficient reference system propagators. J. Chem. Phys., 105:1426–1436, 1996.CrossRefGoogle Scholar
  59. 1301.
    W. F. van Gunsteren and M. Karplus. Effect of constraints on the dynamics of macromolecules. Macromolecules, 15:1528–1543, 1982.CrossRefGoogle Scholar
  60. 1304.
    J. VandeVondele and U. Rothlisberger. Canonical adiabatic free energy sampling (CAFES): A novel method for the exploration of free energy surface. J. Phys. hem. B, 106:203–208, 2002.CrossRefGoogle Scholar
  61. 1364.
    S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D.A. Case. An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem., 7:230–252, 1986.CrossRefGoogle Scholar
  62. 1372.
    E.Westhof and L. Jaeger. RNA pseudoknots. Curr. Opin. Struct. Biol., 2:327–333, 1992.CrossRefGoogle Scholar
  63. 1375.
    J. H. White. An introduction to the geometry and topology of DNA structures. In M. S. Waterman, editor, Mathematical Methods for DNA Sequences, chapter 9. RC Press, Boca Raton, Florida, 1989.Google Scholar
  64. 1376.
    H. Wille, M. D. Michelitsch, V. Guénebaut, S. Supattapone, A. Serban, F. E. Cohen, D. A. Agard, and S. B. Prusiner. Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA, 99:3563–3568, 2002.Google Scholar
  65. 1397.
    B. Wu, P. Dr¨oge, and C. A. Davey. Site selectivity of platinum anticancer therapeutics. Nat. Chem. Biol., 4:110–112, 2008.Google Scholar
  66. 1399.
    X. Wu and S. Wang. Enhancing systematic motion in molecular dynamics simulation. J. Chem. Phys., 110:9401–9410, 1999.CrossRefGoogle Scholar
  67. 1402.
    D. Xie and T. Schlick. Efficient implementation of the truncated Newton method for large-scale chemistry applications. SIAM J. Opt., 10(1):132–154, 1999.MathSciNetMATHCrossRefGoogle Scholar
  68. 1447.
    Y. Zhang. Pseudobond Ab Initio QM/MM approach and its applications to enzyme reactions. Theor. Chem. Acc., 116:43–50, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations