Molecular Dynamics: Basics

  • Tamar Schlick
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)


Molecular dynamics (MD) simulations represent the computer approach to statistical mechanics. As a counterpart to experiment, MD simulations are used to estimate equilibrium and dynamic properties of complex systems that cannot be calculated analytically. Representing the exciting interface between theory and experiment, MD simulations occupy a venerable position at the crossroads of mathematics, biology, chemistry, physics, and computer science.


Molecular Dynamic Molecular Dynamic Simulation Molecular Dynamic Trajectory Brownian Dynamic Microcanonical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 4.
    S. A. Adcock and J. A. McCammon. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev., 106:1589–1615, 2006.CrossRefGoogle Scholar
  2. 22.
    M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, New York, NY, 1990.Google Scholar
  3. 43.
    H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72:2384–2393, 1980.CrossRefGoogle Scholar
  4. 44.
    H. C. Andersen. Rattle: a ‘velocity’ version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys., 52:24–34, 1983.CrossRefMATHGoogle Scholar
  5. 75.
    D. Backowies and W. Thiel. Hybrid models for combined quantum mechanical and molecular mechanical approaches. J. Phys. Chem., 100:10580–10594, 1996.CrossRefGoogle Scholar
  6. 92.
    E. Barth, K. Kuczera, B. Leimkuhler, and R. D. Skeel. Algorithms for constrained molecular dynamics. J. Comput. Chem., 16:1192–1209, 1995.CrossRefGoogle Scholar
  7. 93.
    E. Barth, M. Mandziuk, and T. Schlick. A separating framework for increasing the timestep in molecular dynamics. In W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, editors, Computer Simulation of Biomolecular Systems: Theoreti- cal and Experimental Applications, volume III, chapter 4, pages 97–121. ESCOM, Leiden, The Netherlands, 1997.Google Scholar
  8. 94.
    E. Barth and T. Schlick. Extrapolation versus impulse in multiple-timestepping schemes: II. Linear analysis and applications to Newtonian and Langevin dynamics. J. Chem. Phys., 109:1632–1642, 1998.Google Scholar
  9. 95.
    E. Barth and T. Schlick. Overcoming stability limitations in biomolecular dynam- ics: I. Combining force splitting via extrapolation with Langevin dynamics in LN. . Chem. Phys., 109:1617–1632, 1998.Google Scholar
  10. 97.
    P. Batcho, D. A. Case, and T. Schlick. Optimized particle-mesh Ewald / multiple-timestep integration for molecular dynamics simulations. J. Chem. Phys., 115:4003–4018, 2001.CrossRefGoogle Scholar
  11. 99.
    P. Batcho and T. Schlick. Special stability advantages of position Verlet over velocity Verlet in multiple-timestep integration. J. Chem. Phys., 115:4019–4029, 2001.CrossRefGoogle Scholar
  12. 122.
    H. J. C. Berendsen. Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics. Cambridge University Press, Cambridge, UK, 2007.Google Scholar
  13. 123.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. aak. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81:3684–3690, 1984.Google Scholar
  14. 134.
    J. J. Biesiadecki and R. D. Skeel. Dangers of multiple-time-step methods. . Comput. Phys., 109:318–328, 1993.Google Scholar
  15. 142.
    J. A. Board, Jr., J. W. Causey, T. F. Leathrum, Jr., A.Windemuth, and K. Schulten. ccelerated molecular dynamics simulations with the parallel fast multiple algorithm. Chem. Phys. Lett., 198:89–94, 1992.CrossRefGoogle Scholar
  16. 143.
    J. A. Board, Jr., L. V. Kalé, K. Schulten, R. D. Skeel, and T. Schlick. Modeling biomolecules: Larger scales, longer durations. IEEE Comput. Sci. Eng., 1:19–30, Winter 1994.Google Scholar
  17. 158.
    G. R. Bowman and V. S. Pande. The roles of entropy and kinetics in structure prediction. PLoS ONE, 4:e5840, 2009. doi:10.1371/journal.pone.0005840.CrossRefGoogle Scholar
  18. 165.
    P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag, New York, NY, second edition, 1987.Google Scholar
  19. 178.
    C. L. Brooks, III, M. Karplus, and B.M. Pettitt. Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, volume 71 of Advances in Chemical Physics. John Wiley & Sons, New York, NY, paperback edition, 1990.Google Scholar
  20. 219.
    T. E. Cheatham, III and P. A. Kollman. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J. Mol. iol., 259:434–444, 1996.CrossRefGoogle Scholar
  21. 220.
    T. E. Cheatham, III, J. L. Miller, T. Fox, T. A. Darden, and P. A. Kollman. Molec- ular dynamics simulations of solvated biomolecular systems: The particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J. Amer. hem. Soc., 117:4193–4194, 1995.CrossRefGoogle Scholar
  22. 270.
    C. J. Cramer. Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons Inc., Hoboken, NJ, second edition, 2004.Google Scholar
  23. 286.
    X. Daura, B. Oliva, E. Querol, F. X. Avilés, and O. Tapia. On the sensitivity of MD trajectories to changes in water-protein interaction parameters: The potato carboxypeptidase inhibitor in water as a test case for the GROMOS force field. roteins: Struc. Func. Gen., 25:89–103, 1996.Google Scholar
  24. 290.
    P. S. de Laplace. Oeuvres Compl`etes de Laplace. Théorie Analytique des Probabilités, volume VII. Gauthier-Villars, Paris, France, third edition, 1820.Google Scholar
  25. 300.
    P. Derreumaux and G. Vergoten. Influence of the spectroscopic potential en- ergy function SPASIBA on molecular dynamics of proteins: Comparison with the AMBER potential. J. Mol. Struct., 286:55–64, 1993.Google Scholar
  26. 304.
    P. Deuflhard, M. Dellnitz, O. Junge, and Ch. Sch¨utte. Computation of essential molecular dynamics by subdivision techniques: I. Basic concepts. Technical Re- port SC 96–45, Konrad-Zuse-Zentrum f¨ur Informationstechnik Berlin, Takustraβe 7, D-14195, Berlin-Dahlem, December 1996.Google Scholar
  27. 320.
    P. A. M. Dirac. Quantum mechanics of many-electron systems. Proc. Royal Soc. ondon, A123:714–733, 1929.CrossRefGoogle Scholar
  28. 356.
    R. Elber, J. Meller, and R. Olender. Stochastic path approach to compute atomi- cally detailed trajectories: Application to the folding of C peptide. J. Phys. Chem., 103:899–911, 1999.CrossRefGoogle Scholar
  29. 360.
    A. D. Ellington and J. W. Szostak. In Vitro selection of RNA molecules that bind specific ligands. Nature, 346:818–822, 1990.CrossRefGoogle Scholar
  30. 364.
    M. Enserink. Full-genome sequencing paved the way from spores to a suspect. cience, 321:898–899, 2008.Google Scholar
  31. 382.
    M. Feig and B. M. Pettitt. Crystallographic water sites from a theoretical perspective. Curr. Biol., 6:1351–1354, 1998.Google Scholar
  32. 389.
    W. A. Fenton and A. L. Horwich. GroEL-mediated protein folding. Protein Sci., 6:743–760, 1997.Google Scholar
  33. 398.
    A. R. Fersht and V. Daggett. Protein folding and unfolding at atomic resolution. ell, 108:573–582, 2002.Google Scholar
  34. 413.
    C. A. Floudas and P. Pardalos, editors. Optimization in Computational Chem- istry and Molecular Biology: Local and Global Approaches. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.Google Scholar
  35. 422.
    M. D. Frank-Kamenetskii. Unravelling DNA. VCH Publishers, New York, NY, 1993. (Translated from Russian by L. Liapin).Google Scholar
  36. 423.
    M. D. Frank-Kamenetskii. Triplex DNA structures. Ann. Rev. Biochem., 64:65–95, 1995.CrossRefGoogle Scholar
  37. 428.
    P. L. Freddolino, S. Park, B. Roux, and K. Schulten. Force field bias in protein folding simulations. Biophys. J., 96:3772–3780, 2009.CrossRefGoogle Scholar
  38. 437.
    H. H. Gan, S. Pasquali, and T. Schlick. Exploring the repertoire of RNA sec- ondary motifs using u graph theory: Implications for RNA design. Nuc. Acids Res., 31:2926–2943, 2003.CrossRefGoogle Scholar
  39. 441.
    R. M. Ganunis, H. Guo, and T. D. Tullius. Effect of the crystallizing agent 2-methyl-2,4-pentanediol on the structure of adenine tract DNA in solution. iochemistry, 35:13729–13732, 1996.Google Scholar
  40. 452.
    J. Gevertz, H. H. Gan, and T. Schlick. In Vitro RNA random pools are not structurally diverse: A computational analysis. RNA, 11:853–863, 2005.CrossRefGoogle Scholar
  41. 455.
    S. Ghosh, A. Nie, J. An, and Z. Huang. Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 10:194–202, 2006.CrossRefGoogle Scholar
  42. 474.
    L. Goodman, V. Pophristic, and F. Weinhold. Origin of methyl internal rotation barriers. Acc. Chem. Res., 32:983–993, 1999.CrossRefGoogle Scholar
  43. 486.
    eferences [484] J. M. Grimes, J. N. Burroughs, P. Gouet, J. M. Diprose, R. Malby, S. Ziéntara, P. P. C. Mertens, and D. I. Stuart. The atomic structure of the bluetongue virus core. Nature, 395:470–478, 1998.Google Scholar
  44. 494.
    P. J. Hagerman. Straightening out the bends in curved DNA. Biochim. Biophys. cta, 1131:125–132, 1992.CrossRefGoogle Scholar
  45. 510.
    U. H. E. Hansmann. Parallel-tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett., 281:140–150, 1997.CrossRefGoogle Scholar
  46. 524.
    eferences [522] S. C. Harvey and M. Prabhakaran. Ribose puckering: Structure, dynamics, en- ergetics and the pseudorotation cycle. J. Amer. Chem. Soc., 108:6128–6136, 1986.Google Scholar
  47. 525.
    S. C. Harvey,M. Prabhakaran, B. Mao, and J. A.McCammon. Phenylanine transfer RNA: Molecular dynamics simulation. Science, 223:1189–1191, 1984.CrossRefGoogle Scholar
  48. 526.
    S. C. Harvey, R. K.-Z. Tan, and T. E. Cheatham, III. The flying ice cube: Ve- locity rescaling in molecular dynamics leads to violation of energy equipartition. . Comput. Chem., 19:726–740, 1998.Google Scholar
  49. 553.
    J. Hizver, H. Rozenberg, F. Frolow, D. Rabinovich, and Z. Shakked. DNA bending by an adenine-thymine tract and its role in gene regulation. Proc. Natl. Acad. Sci. SA, 98:8490–8495, 2001.CrossRefGoogle Scholar
  50. 566.
    B. Honig. Protein folding: From the Levinthal paradox to structure prediction. . Mol. Biol., 293:283–293, 1999.Google Scholar
  51. 572.
    W. A. Houry, D. Frishman, C. Eckerskorn, F. Lottspeich, and F. U. Hartl. Iden- tification of in vivo substrates of the chaperonin GroEL. Nature, 402:147–154, 1999.CrossRefGoogle Scholar
  52. 573.
    K. Howard. The bioinformatics gold rush. Sci. Amer., 283:58–63, 2000.Google Scholar
  53. 574.
    H. Hu, Z. Y. Lu, and W. T. Yang. QM/MM minimum free-energy path: Method- ology and application to triosephosphate isomerase. J. Chem. Theory Comput., 3:390–406, 2007.CrossRefGoogle Scholar
  54. 577.
    J. Hu, A. Ma, and R. Dinner. Monte Carlo simulations of biomolecules: the MC module in CHARMM. J. Comput. Chem., 27:203–216, 2006.CrossRefGoogle Scholar
  55. 579.
    J. Huang, T. Schlick, and A. Vologodskii. Dynamics of site juxtaposition in supercoiled DNA. Proc. Natl. Acad. Sci. USA, 98:968–973, 2001.CrossRefGoogle Scholar
  56. 628.
    R. S. Kamath, A. G. Fraser, Y. Dong, G. Poulin, R. Durbin, M. Gotta, A. Kanapin, N. Le Bot, S. Moreno, M. Sohrmann, D. P. Welchman, P. Zipperlen, and J. Ahringer. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421:231–237, 2003.CrossRefGoogle Scholar
  57. 636.
    J. Karle. Macromolecular structure from anomalous dispersion. Phys. Today, 42:20–22, 1989.CrossRefGoogle Scholar
  58. 658.
    K. V. Klenin, M. D. Frank-Kamenetskii, and J. Langowski. Modulation of intramolecular interactions in superhelical DNA by curved sequences: A Monte- Carlo simulation study. Biophys. J., 68:81–88, 1995.CrossRefGoogle Scholar
  59. 668.
    F. E. Koehn and G. T. Carter. The evolving role of natural products in drug discovery. Nat. Rev. Drug Disc., 4:206–220, 2005.CrossRefGoogle Scholar
  60. 676.
    R. Kornberg and J. O. Thomas. Chromatin structure: Oligomers of histones. cience, 184:865–868, 1974.Google Scholar
  61. 731.
    eferences [729] H. Lei and Y. Duan. Improved sampling methods for molecular simulation. Curr. pin. Struct. Biol., 17:187–191, 2007.Google Scholar
  62. 733.
    B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, UK, 2004.Google Scholar
  63. 811.
    A. D. MacKerell, Jr., J. Wiorkiewicz-Kuczera, and M. Karplus. An all-atom em- pirical energy function for the simulation of nucleic acids. J. Amer. Chem. Soc., 117:11946–11975, 1995.CrossRefGoogle Scholar
  64. 826.
    G. S. Manning and J. Ray. Counterion condensation revisited. J. Biomol. Struct. ynam., 16:461–476, 1998.CrossRefGoogle Scholar
  65. 835.
    J. Martin, T. Langer, R. Boteva, A. Schramel, A. L. Horwich, and F.-U. Hartl. haperonin-mediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate. Nature, 352:36–42, 1991.CrossRefGoogle Scholar
  66. 836.
    J. A. Martino, V. Katritch, and W. K. Olson. Influence of nucleosome structure on the three-dimensional folding of idealized minichromosomes. Struc. Fold. Design, 7:1009–1022, 1999.CrossRefGoogle Scholar
  67. 846.
    S. J. McBryant, J. Klonoski, T. C. Sorensen, S. S. Norskog, S. Williams, M. G. esch, J. A. Toombs, III, S. E. Hobdey, and J. C. Hansen. Determinants of histone H4 N-terminal domain function during nucleosomal array oligomerization. J. Biol. hem., 284:16716–16722, 2009.Google Scholar
  68. 849.
    J. A. McCammon, B. M. Pettitt, and L. R. Scott. Ordinary differential equations of molecular dynamics. Computers Math. Applic., 28:319–326, 1994.MathSciNetCrossRefMATHGoogle Scholar
  69. 850.
    J. J. McCarthy and R. Hilfiker. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotech., 18:505–508, 2000.CrossRefGoogle Scholar
  70. 853.
    J. D. McGhee, J. M. Nickol, G. Felsenfeld, and D. C. Rau. Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell, 33:831–841, 1983.CrossRefGoogle Scholar
  71. 866.
    A. S.Mironov, I. Gusarov, R. Rafikov, L. E. Lopez, K. S., R. A. Kreneva, D. A. erumov, and E. Nudler. Sensing small molecules by nascent RNA: A mechanism to control transcription in bacteria. Cell, 111:747–756, 2002.Google Scholar
  72. 868.
    eferences [866] B. Mishra and T. Schlick. The notion of error in Langevin dynamics: 1. Linear analysis. J. Chem. Phys., 105:299–318, 1996.Google Scholar
  73. 924.
    F. Noé, I. Horenko, C. Sch¨utte, and J. C. Smith. Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states. J. Chem. Phys., 126:155102, 2007.Google Scholar
  74. 925.
    W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Anderson. The multiscale coarse-grained method: I. a rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys., 128:244114, 2008.Google Scholar
  75. 964.
    S. C. Park and K. W. Miller. Random number generators: Good ones are hard to find. Comm. ACM, 31:1192–1201, 1988.MathSciNetCrossRefGoogle Scholar
  76. 967.
    M. Parrinello. Eppur si muove. In A. H. Zewail, editor, Physical biology: 4D visualization of complexity, chapter 11, pages 247–266. Imperial College Press, London, UK, 2008.Google Scholar
  77. 969.
    S. Pasquali, H. H. Gan, and T. Schlick. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs. Nuc. Acids Res., 33:1384–1398, 2005.CrossRefGoogle Scholar
  78. 1038.
    R. Radhakrishnan and T. Schlick. Correct and incorrect nucleotide incorporation pathways in dna polymerase β’s. Biochem. Biophys. Res. Comm., 350:521–529, 2006.CrossRefGoogle Scholar
  79. 1067.
    J. Rogal and P. G. Bolhuis. Multiple state transition path sampling. J. Chem. Phys., 129:224107, 2008.CrossRefGoogle Scholar
  80. 1079.
    H. Rozenberg, D. Rabinovich, F. Frolow, R. S. Hegde, and Z. Shakked. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets. Proc. Natl. Acad. Sci. USA, 95:15194–15199, 1998.CrossRefGoogle Scholar
  81. 1090.
    F. A. Samatey, K. Imada, S. Nagashima, F. Vonderviszt, T. Kumasaka, M. Yamamoto, and K. Namba. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature, 410:331–337, 2001.CrossRefGoogle Scholar
  82. 1099.
    T. Schalch, S. Duda, D. F. Sargent, and T. J. Richmond. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature, 436:138–141, 2005.CrossRefGoogle Scholar
  83. 1110.
    T. Schlick. Modeling superhelical DNA: Recent analytical and dynamic ap- proaches. Curr. Opin. Struc. Biol., 5:245–262, 1995.CrossRefGoogle Scholar
  84. 1118.
    T. Schlick. RNA — the cousin left behind becomes a star. In J. ˇSponer and F. Lankaˇs, editors, Computational Studies of DNA and RNA, pages 259–281. pringer Verlag, Dordrecht, The Netherlands, 2006.Google Scholar
  85. 1119.
    T. Schlick. From macroscopic to mesoscopic models of chromatin folding. In J. Fish, editor, Bridging The Scales in Science in Engineering, pages 514–535. xford University Press, New York, NY, 2009.Google Scholar
  86. 1163.
    G. L. Seibel, U. C. Singh, and P. A Kollman. A molecular dynamics simulation of double-helical B-DNA including counterions and water. Proc. Natl. Acad. Sci. SA, 82:6537–6540, 1985.Google Scholar
  87. 1164.
    E. Selsing, R. D. Wells, C. J. Alden, and S. Arnott. Bent DNA: Visualization of a base-paired and stacked A-B conformational junction. J. Biol. Chem., 254:5417– 5422, 1979.Google Scholar
  88. 1165.
    D. Sen and W. Gilbert. Cationic switches in the formation of DNA structures containing guanine-quartets. In R. H. Sarma and M. H. Sarma, editors, Struc- ture and Function: Proceedings of the Seventh Conversation in Biomolecular Stereodynamics. Adenine Press, Schenectady, New York, 1992.Google Scholar
  89. 1197.
    D. Sindhikara, Y. Meng, and A. E. Roitberg. Exchange frequency in replica exchange molecular dynamics. J. Chem. Phys., 128:024103, 2008.CrossRefGoogle Scholar
  90. 1199.
    U. C. Singh and P. A. Kollman. A combined Ab Initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl exchange reaction and gas phase protonation of polyethers. J. Comput. Chem., 7:718–730, 1986.CrossRefGoogle Scholar
  91. 1220.
    A. Srinivasan and W. K. Olson. Polynucleotide conformation in real solution — a preliminary theoretical estimate. Fed. Amer. Soc. Exp. Bio., 39:2199, 1980.Google Scholar
  92. 1227.
    S. D. Stellman, B. Hingerty, S. B. Broyde, E. Subramanian, T. Sato, and R. Langridge. Structure of guanosine-3’, 5’-cytidine monophosphate. I. Semi- empirical potential energy calculations and model-building. Biopolymers, 12:1731–2750, 1973.Google Scholar
  93. 1244.
    D. W. Sumners. Lifting the curtain: Using topology to probe the hidden action of enzymes. Notices Amer. Math. Soc., 42:528–537, 1995.MathSciNetMATHGoogle Scholar
  94. 1253.
    F. Tama, M. Valle, J. Frank, and C. L. Brooks, III. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl. Acad. Sci. USA, 100:9319–9323, 2003.CrossRefGoogle Scholar
  95. 1264.
    J. M. Thornton, C. A. Orengo, A. E. Todd, and F. M. G. Pearl. Protein folds, functions and evolution. J. Mol. Biol., 293:333–342, 1999.CrossRefGoogle Scholar
  96. 1269.
    D. J. Tobias and C. L. Brooks, III. Conformational equilibrium in the alanine dipep- tide in the gas phase and aqueous solution: A comparison of theoretical results. . Chem. Phys., 89:5115–5126, 1988.Google Scholar
  97. 1277.
    E. N. Trifonov, R. K.-Z. Tan, and S. C. Harvey. Static persistence length of DNA. n W. K. Olson, M. H. Sarma, R. H. Sarma, and M. Sundaralingam, editors, Struc- ture and Expression: DNA Bending and Curvature, volume 3. Adenine Press, Schenectady, New York, 1987.Google Scholar
  98. 1291.
    V. M. Unger. Electron cryomicroscopy. Curr. Opin. Struct. Biol., 11:548–554, 2001.CrossRefGoogle Scholar
  99. 1292.
    I. Us´on and G. M. Sheldrick. Advances in direct methods for protein crystallogra- phy. Curr. Opin. Struct. Biol., 9:643–648, 1999.Google Scholar
  100. 1296.
    W. F. van Gunsteren. Constrained dynamics of flexible molecules. Mol. Phys., 40:1015–1019, 1980.CrossRefGoogle Scholar
  101. 1302.
    K. van Holde and J. Zlatanova. Chromatin fiber structure, where is the problem now? Sem. Cell Dev. Bio., 18:651–658, 2007.CrossRefGoogle Scholar
  102. 1342.
    eferences [1337] Y. Wang and D. J. Patel. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1:263–282, 1993.Google Scholar
  103. 1344.
    Z. Wang and R. M. Harshey. Crucial role for DNA supercoiling in Mu transposi- tion: A kinetic study. Proc. Natl. Acad. Sci. USA, 91:699–703, 1994.CrossRefGoogle Scholar
  104. 1348.
    A. Warshel, M. Kato, and A. V. Pisliakov. Polarizable force fields: History, test cases, and prospects. J. Chem. Theor. Comput., 3:2034–2045, 2007.CrossRefGoogle Scholar
  105. 1349.
    A. Warshel and M. Levitt. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of carbonium ion in the reaction of lysozyme. . Mol. Biol., 103:227–249, 1976.Google Scholar
  106. 1386.
    W. Winkler, A. Nahvi, and R. R. Breaker. Thiamine derivatives bind messenger RNAs directly to regulate bacterial expression. Nature, 419:952–956, 2002.CrossRefGoogle Scholar
  107. 1387.
    J. Woda, B. Schneider, K. Patel, K. Mistry, and H. M. Berman. An analysis of the relationship between hydration and protein-DNA interactions. Biophys. J., 75:2170–2177, 1998.CrossRefGoogle Scholar
  108. 1401.
    K. W¨uthrich. NMR of Proteins and Nucleic Acids. (The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University series). Wiley Interscience, New York, NY, 1986.Google Scholar
  109. 1408.
    Y. Xin, C. Laing, N. B. Leontis, and T. Schlick. Annotation of tertiary interactions in RNA structures reveals variations and correlations. RNA, 14:2465–2477, 2008.CrossRefGoogle Scholar
  110. 1419.
    D. M. York, T.-S. Lee, and W. Yang. Parameterization and efficient implemen- tation of a solvent model for linear-scaling semiempirical quantum-mechanical calculations of biological macromolecules. Chem. Phys. Lett., 263:297–304, 1996.CrossRefGoogle Scholar
  111. 1421.
    D. M. York, W. Yang, H. Lee, T. Darden, and L. G. Pederson. Toward the accurate modeling of DNA: The importance of long-range electrostatics. J. Amer. Chem. oc., 117:5001–5002, 1995.CrossRefGoogle Scholar
  112. 1428.
    H. Yu. Extending the size limit of protein nuclear magnetic resonance. Proc. Natl. cad. Sci. USA, 96:332–334, 1999.CrossRefGoogle Scholar
  113. 1437.
    P. D. Zamore. Ancient pathways programmed by small RNAs. Science, 296: 1265–1269, 2002.CrossRefGoogle Scholar
  114. 1442.
    G. Zhang and T. Schlick. Implicit discretization schemes for Langevin dynamics. ol. Phys., 84:1077–1098, 1995.Google Scholar
  115. 1448.
    Y. Zhang, T. Lee, and W. Yang. A pseudo-bond approach to combining quantum mechanical and molecular mechanical methods. J. Chem. Phys., 110:46–54, 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations