Advertisement

Monte Carlo Techniques

  • Tamar Schlick
Chapter
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)

Abstract

From Washington D.C. to Wall Street to Los Alamos, statistical techniques termed collectively as Monte Carlo (MC) are powerful problem solvers. Indeed, disciplines as disparate as politics, economics, biology, and high-energy physics rely on MC tools for handling daily tasks.

Keywords

Monte Carlo Monte Carlo Simulation Random Number Generator Detailed Balance Metropolis Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Adams and J. L. Nazareth, editors. Linear and Nonlinear Conjugate Gradient- Related Methods. SIAM, Philadelphia, PA, 1996.Google Scholar
  2. 2.
    M. D. Adams, G. G. Sutton, H. O. Smith, E. W. Myers, and J. C. Venter. The independence of our genome assembly. Proc. Natl. Acad. Sci. USA, 100: 3025–3026, 2003.CrossRefGoogle Scholar
  3. 10.
    A. Aguzzi, F. Montrasio, and P. S. Kaeser. Prions: Health scare and biological challenge. Nature Rev. Mol. Cell Biol., 2:118–126, 2001.CrossRefGoogle Scholar
  4. 15.
    E. Akhmatskaya, N. Bou-Rabee, and S. Reich. A comparison of generalized hy- brid Monte Carlo methods with and without momentum flip. J. Comput. Phys., 228:2256–2265, 2009.MathSciNetMATHCrossRefGoogle Scholar
  5. 22.
    M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, New York, NY, 1990.Google Scholar
  6. 38.
    J. G. Amar. The Monte Carlo method in science and engineering. Comput. Sci. ngin., 8:9–19, 2006. doi:10.1109/MCSE.2006.34.CrossRefGoogle Scholar
  7. 46.
    S. L. Anderson. Random number generators on vector supercomputers and other advanced architectures. SIAM Rev., 32:221–251, 1990.MathSciNetMATHCrossRefGoogle Scholar
  8. 63.
    G. Arya and T. Schlick. Efficient global biopolymer sampling with end-transfer configurational bias Monte Carlo. J. Chem. Phys., 106:044107, 2007.CrossRefGoogle Scholar
  9. 64.
    G. Arya and T. Schlick. A tale of tails: How histone tails mediate chromatin compaction in different salt and linker histone environments. J. Phys. Chem. A, 113:4045–4059, 2009.CrossRefGoogle Scholar
  10. 129.
    B. J. Berne and J. E. Straub. Novel methods of sampling phase space in the simulation of biological systems. Curr. Opin. Struct. Biol., 7:181–189, 1997.CrossRefGoogle Scholar
  11. 147.
    P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler. Transition path sam- pling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. hem, 53:291–318, 2002.CrossRefGoogle Scholar
  12. 155.
    G. C. Boulougouris and D. Frenkel. Novel Monte Carlo scheme for systems with short-ranged interactions. J. Chem. Phys., 122:244105, 2005.CrossRefGoogle Scholar
  13. 165.
    P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag, New York, NY, second edition, 1987.Google Scholar
  14. 213.
    D. Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press, New York, NY, 1987.Google Scholar
  15. 224.
    L. Chen and M. W. Deem. Monte Carlo methods for small molecule high- throughput experimentation. J. Chem. Inf. Comput. Sci., 41:950–957, 2001.CrossRefGoogle Scholar
  16. 226.
    W. W. Chen, J. S. Yand, and E. Shakhnovich. A knowledge-based move set for protein folding. Prot. Struc. Funct. Bioinf., 66:682–688, 2007.CrossRefGoogle Scholar
  17. 247.
    J. B. Clarage, T. Romo, B. K. Andrews, B. M. Pettitt, and G. N. Philipps, Jr. A sampling problem in molecular dynamics simulations of macromolecules. Proc. atl. Acad. Sci. USA, 92:3288–3292, 1995.CrossRefGoogle Scholar
  18. 344.
    Z.-H. Duan and R. Krasny. An adaptive tree code for computing nonbonded po- tential energy in classical molecular systems. J. Comput. Chem., 22:184–195, 2001.CrossRefGoogle Scholar
  19. 347.
    H. J. Dyson and P. E. Wright. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol., 12:54–60, 2002.CrossRefGoogle Scholar
  20. 372.
    C. S. Ewig, T. S. Thacher, and A. T. Hagler. Derivation of class II force fields.Google Scholar
  21. 392.
    A. R. Ferré-D’Amaré and J. A. Doudna. RNA folds: Insights from recent crystal structures. Ann. Rev. Biophys. Biomol. Struc., 28:57–73, 1999.Google Scholar
  22. 428.
    P. L. Freddolino, S. Park, B. Roux, and K. Schulten. Force field bias in protein folding simulations. Biophys. J., 96:3772–3780, 2009.CrossRefGoogle Scholar
  23. 469.
    G. H. Golub and C. F. van Loan. Matrix Computations. John Hopkins University Press, Baltimore, MD, second edition, 1986.Google Scholar
  24. 508.
    W. Han, C.-K.Wan, and Y.-D.Wu. Toward a coarse-grained protein model coupled with a coarse-grained solvent model: solvation free energies of amino acid side chains. J. Chem. Theo. Comp., 4:1891–1901, 2008.CrossRefGoogle Scholar
  25. 547.
    T. Hermann and D. J. Patel. Stitching together RNA tertiary architectures. J. Mol. iol., 294:828–849, 1999.Google Scholar
  26. 559.
    S. R. Holbrook. RNA structure: The long and the short of it. Curr. Opin. Struct. iol., 15:302–308, 2005.CrossRefGoogle Scholar
  27. 575.
    H. Hu and W. Yang. Free energies of chemical reactions in solution and in en- zymes with Ab Initio quantum mechanics/molecular mechanics methods. Annu. ev. Phys. Chem., 59:573–601, 2008.CrossRefGoogle Scholar
  28. 596.
    eferences [594] J. A. Izaguirre. Longer Time Steps for Molecular Dynamics. PhD thesis, University of Illinois at Urbana-Champaign, 1999. Also UIUC Technical Report UIUCDCS- R-99-2107. Available via www.cs.uiuc.edu/research/tech-reports.html.Google Scholar
  29. 607.
    R. M. Jendrejack, M. D. Graham, and J. J. de Pablo. Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations. J. Chem. Phys., 113:2894–2900, 2000.CrossRefGoogle Scholar
  30. 619.
    W. L. Jorgensen, J. Chandrasekar, J. Madura, R. Impey, and M. Klein. Compar- ison of simple potential functions for simulating liquid water. J. Chem. Phys., 79:926–935, 1983.CrossRefGoogle Scholar
  31. 623.
    G. F. Joyce, W. C. Still, and K. T. Chapman. Combinatorial chemistry. Searching for a winning combination (Editorial overview). Curr. Opin. Chem. Biol., 1:3–4, 1997.Google Scholar
  32. 625.
    D. Junghans and U. H. E. Hansmann. Numerical comparison of Wang-Landau sampling and parallel tempering for met-enkephlin. Intl. J. Mod. Phys. C, 17: 817–824, 2006.MATHCrossRefGoogle Scholar
  33. 663.
    J. Kling. Out ofMalaysia: Finding natural products to fight AIDS. Mod. Drug Dis., 2:31–36, 1999.Google Scholar
  34. 676.
    R. Kornberg and J. O. Thomas. Chromatin structure: Oligomers of histones. cience, 184:865–868, 1974.Google Scholar
  35. 688.
    P. Kumar, H.-S. Ban, S.-S. Kim, H. Wu, T. Pearson, D. L. Greiner, A. Laouar, J. Yao, V. Haridas, K. Habiro, Y.-G. Yang, J.-H. Jeong, K.-Y. Lee, Y.-H. Kim, S. W. Kim, M. Peipp, G. H. Fey, N. Manjunath, L. D. Shultz, and S.-K. Lee. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell, 134:577–586, 2008.CrossRefGoogle Scholar
  36. 706.
    U. Laserson, H. H. Gan, and T. Schlick. Predicting candidate genomic se- quences that correspond to synthetic functional RNA motifs. Nucl. Acids Res., 33: 6057–6069, 2005.CrossRefGoogle Scholar
  37. 713.
    A. Lebrun and R. Lavery.Modelling extreme stretching of DNA. Nucl. Acids Res., 24:2260–2267, 1996.CrossRefGoogle Scholar
  38. 714.
    A. Lebrun and R. Lavery. Unusual DNA conformations. Curr. Opin. Struct. Biol., 7:348–356, 1998.CrossRefGoogle Scholar
  39. 715.
    P. L’Ecuyer. Maximally-equidistributed combined Tausworthe generators. Math. omput., 65:203–213, 1996.MathSciNetMATHGoogle Scholar
  40. 716.
    P. L’Ecuyer. Bad lattice structures for vectors of non-successive values produced by some linear recurrences. Informs J. Comput., 9:57–60, 1997.MathSciNetMATHCrossRefGoogle Scholar
  41. 717.
    P. L’Ecuyer. Random number generation. In J. Banks, editor, Handbook on Simulation, chapter 4, pages 93–137. John Wiley & Sons, New York, NY, 1998.Google Scholar
  42. 718.
    P. L’Ecuyer. Good parameter sets for combined multiple recursive random number generators. Oper. Res., 47:159–164, 1999.MATHCrossRefGoogle Scholar
  43. 719.
    P. L’Ecuyer. Tables of maximally-equidistributed combined LFSR generators. ath. Comput., 68:261–269, 1999.Google Scholar
  44. 720.
    P. L’Ecuyer. Pseudorandom number generation. In S. G. Henderson and B. L. elson, editors, Handbooks in Operations Research and Management Sci- ence: Simulation, chapter 3, pages 55–81. Elsevier Science, Amsterdam, The Netherlands, 2006.Google Scholar
  45. 721.
    P. L’Ecuyer. Pseudorandom number generators. In E. Platen and P. Jaeckel, editors, Encyclopedia of Quantitative Finance, Simulation Methods in Financial Engineering. Wiley, New York, NY, 2009.Google Scholar
  46. 722.
    P. L’Ecuyer and T. H. Andres. A random number generator based on the com- bination of four LCGs. Mathematics and Computers in Simulation, 44:99–107, 1997.MathSciNetMATHCrossRefGoogle Scholar
  47. 760.
    J. Li, C. J. Cramer, and D. G. Truhlar. Application of a universal solvation model to nucleic acid bases: Comparison of semiempirical molecular orbital theory, ab initio Hartree–Fock theory, and density functional theory. Biophys. Chem., 78:147–155, 1999.CrossRefGoogle Scholar
  48. 781.
    Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and L. M. Smith. DNA computing on surfaces. Science, 403:175–179, 2000.Google Scholar
  49. 832.
    eferences [830] J. F. Marko and E. D. Siggia. Fluctuations and supercoiling of DNA. Science, 265:506–508, 1994.Google Scholar
  50. 837.
    G. J. Martyna, A. Hughes, and M. E. Tuckerman. Molecular dynamics algorithms for path integrals at constant pressure. J. Chem. Phys., 110:3275–3290, 1999.CrossRefGoogle Scholar
  51. 856.
    E. L. Mehler. The Lorentz-Debye-Sack theory and dielectric screening of electro- static effects in proteins and nucleic acids. In J. S. Murray and K. Sen, editors, Molecular Electrostatic Potential: Concepts and Applications, volume 3 of Theo- retical and Computational Chemistry, chapter 9, pages 371–405. Elsevier Science, Amsterdam, 1996.Google Scholar
  52. 928.
    S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. ol. Phys., 52:255–268, 1984.Google Scholar
  53. 931.
    A. Nyberg and T. Schlick. Increasing the time step in molecular dynamics. Chem. hys. Lett., 198:538–546, 1992.CrossRefGoogle Scholar
  54. 960.
    E. Paci, K. Lindorff-Larsen, C. M. Dobson, M. Karplus, and M. Vendruscolo. ransition state contact orders correlate with protein folding rates. J. Mol. Biol., 352:495–500, 2005.CrossRefGoogle Scholar
  55. 985.
    N. D. Pearson and C. D. Prescott. RNA as a drug target. Chem. & Biol., 4:409–414, 1997.CrossRefGoogle Scholar
  56. 986.
    S. Pennell, E. Manktelow, A. Flatt, G. Kelly, S.J. Smerdon, and I. Brierley. The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element. RNA, 14:1366–1377, 2008.CrossRefGoogle Scholar
  57. 997.
    G. A. Petsko. An idea whose time has gone. Genome Biol., 8:107, 2007.CrossRefGoogle Scholar
  58. 1000.
    J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten. Scalable molecular dynamics with NAMD. . Comput. Chem., 26:1781–1802, 2005.Google Scholar
  59. 1046.
    E.A. Rødland. Pseudoknots in RNA secondary structures: representation, enumer- ation, and prevalence. J. Comput. Biol., 13:1197–1213, 2006.MathSciNetCrossRefGoogle Scholar
  60. 1051.
    F. J. Resende and B. V. Costa. Using random number generators in Monte Carlo simulations. Phys. Rev. E, 58:5183–5184, 1998.CrossRefGoogle Scholar
  61. 1117.
    T. Schlick. The critical collaboration between art and science: Applying an ex- periment on a bird in an air pump to the ramifications of genomics on society. eonardo, 38:323–329, 2005.Google Scholar
  62. 1162.
    E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Thastr¨om, Y. Field, I. K. Moore, J. P. Wang, and J. Widom. A genomic code for nucleosome positioning. Nature, 442:772–778, 2006.Google Scholar
  63. 1237.
    W. B. Streett, D. J. Tildesley, and G. Saville. Multiple time step methods in molecular dynamics. Mol. Phys., 35:639–648, 1978.CrossRefGoogle Scholar
  64. 1240.
    L. Stryer. Biochemistry. W. H. Freeman, New York, NY, 5 edition, 2001.Google Scholar
  65. 1328.
    M. Wadman. James watson’s genome sequenced at high speed. Nature, 452:788, 2008.CrossRefGoogle Scholar
  66. 1457.
    X. Zhuang. Single-molecule RNA science. Ann. Rev. Biophys. Biomol. Struc., 34:399–414, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations