Advertisement

Biomolecular Structure and Modeling: Historical Perspective

  • Tamar Schlick
Chapter
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 21)

Abstract

physics, chemistry, and biology have been connected by a web of causal explanation organized by induction-based theories that telescope into one another. Thus, quantum theory underlies atomic physics, which is the foundation of reagent chemistry and its specialized offshoot biochemistry, which interlock with molecular biology — essentially, the chemistry of organic macromolecules — and hence, through successively higher levels of organization, cellular, organismic, and evolutionary biology. Such is the unifying and highly productive understanding of the world that has evolved in the natural sciences.

Keywords

Nuclear Magnetic Resonance Nobel Prize Nuclear Magnetic Resonance Spectroscopy Giant Panda Nuclear Magnetic Resonance Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    M. D. Adams, G. G. Sutton, H. O. Smith, E. W. Myers, and J. C. Venter. The independence of our genome assembly. Proc. Natl. Acad. Sci. USA, 100: 3025–3026, 2003.CrossRefGoogle Scholar
  2. 19.
    B. J. Alder and T. E. Wainwright. Studies in molecular dynamics. I. General method. J. Chem. Phys., 31:459–466, 1959.MathSciNetGoogle Scholar
  3. 22.
    M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, New York, NY, 1990.Google Scholar
  4. 42.
    K. Anand, J. Ziebuhr, P.Wadhwani, J. R. Mesters, and R. Hilgenfeld. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science, 300:1763–1767, 2003.CrossRefGoogle Scholar
  5. 66.
    K. Ashrafi, F. Y. Chang, J. L. Watts, A. G. Fraser, R. S. Kamath, J. Ahringer, and G. Ruvkun. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 421:268–272, 2003.CrossRefGoogle Scholar
  6. 110.
    J. C. Beauchamp and N. W. Isaacs. Methods for X-ray diffraction analysis of macromolecular structures. Curr. Opin. Chem. Biol., 3:525–529, 1999.CrossRefGoogle Scholar
  7. 124.
    H. J. C. Berendsen, D. van der Spoel, and R. van Drunen. GROMACS: A message- passing parallel molecular dynamics implementation. Comput. Phys. Comm., 91:43–56, 1995.CrossRefGoogle Scholar
  8. 156.
    K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. lepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw. Scalable algorithms for molecular dynamics simulations on commod- ity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, New York, 2006. ACM Press.Google Scholar
  9. 163.
    C. Branden and J. Tooze. Introduction to Protein Structure. Garland Publishing Inc., New York, NY, second edition, 1999. (www.proteinstructure.com/).Google Scholar
  10. 165.
    P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag, New York, NY, second edition, 1987.Google Scholar
  11. 176.
    C. L. Brooks, III. Viewing protein folding from many perspectives. Proc. Natl. cad. Sci. USA, 99:1099–1100, 2002.Google Scholar
  12. 177.
    C. L. Brooks, III. With a little help ... Nature, 420:33–34, 2002.Google Scholar
  13. 178.
    C. L. Brooks, III, M. Karplus, and B.M. Pettitt. Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, volume 71 of Advances in Chemical Physics. John Wiley & Sons, New York, NY, paperback edition, 1990.Google Scholar
  14. 181.
    A. T. Br¨unger, P. D. Adams, and L. M. Rice. New applications of simulated annealing in X-ray crystallography and solution NMR. Structure, 5:325–336, 1997.Google Scholar
  15. 197.
    C. R. Cantor and P. R. Schimmel. Biophysical Chemistry, volume 1–3. W. H. reeman and Company, San Francisco, 1980.Google Scholar
  16. 203.
    D. A. Case. NMR refinement. In P. von Ragué Schleyer (Editor-in Chief), N. L. llinger, T. Clark, J. Gasteiger, P. A. Kollman, and H. F. Schaefer, III, editors, En- cyclopedia of Computational Chemistry, volume 3, pages 1866–1876. John Wiley & Sons, West Sussex, England, 1998.Google Scholar
  17. 220.
    T. E. Cheatham, III, J. L. Miller, T. Fox, T. A. Darden, and P. A. Kollman. Molec- ular dynamics simulations of solvated biomolecular systems: The particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J. Amer. hem. Soc., 117:4193–4194, 1995.CrossRefGoogle Scholar
  18. 229.
    S. Chew, P. Chen, N. Link, K. Galindo, K. Pogue, and J. Abrams. Genome-wide silencing in Drosophila captures conserved apoptotic effectors. Nature, 460:123– 127, 2009.CrossRefGoogle Scholar
  19. 248.
    G. M. Clore and A. M. Gronenborn. New methods of structure refinement for macromolecular structure determination by NMR. Proc. Natl. Acad. Sci. USA, 95:5891–5898, 1998.CrossRefGoogle Scholar
  20. 249.
    G. M. Clore and C. D. Schwieters. Theoretical and computational advances in biomolecular NMR spectroscopy. Curr. Opin. Struct. Biol., 12:146–153, 2002.CrossRefGoogle Scholar
  21. 258.
    F. S. Collins, E. D. Green, A. E. Guttmacher, and M. S. Guyer. A vision for the future of genomics research. Nature, 422:835–847, 2003.CrossRefGoogle Scholar
  22. 259.
    F. S. Collins and K. G. Jegalian. Deciphering the code of life. Sci. Amer., 281:86–91, 1999.CrossRefGoogle Scholar
  23. 268.
    N. R. Cozzarelli. Revisiting the independence of the publicly and privately funded drafts of the human genome. Proc. Natl. Acad. Sci. USA, 100:3021, 2003.CrossRefGoogle Scholar
  24. 273.
    S. Cronin, N. Nehme, S. Limmer, S. Liegeois, J. Pospisilik, D. Schramek, A. Leibbrandt, R. Simoes, S. Gruber, U. Puc, I. Ebersberger, T. Zoranovic, G. Neely, A. von Haeseler, D. Ferrandon, and J. Penninger. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. cience, 325:340–343, 2009.Google Scholar
  25. 275.
    D. Crothers and D. Eisenberg. Physical Chemistry with Applications to the Life Sciences. Benjamin/Cummings, Menlo Park, CA, 1979.Google Scholar
  26. 285.
    X. Daura, B. Jaun, D. Seebach, W. F. Van Gunsteren, and A. Mark. Reversible peptide folding in solution by molecular dynamics simulation. J. Mol. Biol., 280:925–932, 1998.CrossRefGoogle Scholar
  27. 288.
    K. Davies. Cracking the Genome: Inside the Race to Unlock Human DNA. The Free Press (A Simon & Schuster Division), New York, NY, 2001.Google Scholar
  28. 329.
    A. J. Dooley, N. Shindo, B. Taggart, J. G. Park, and Y. P. Pang. From genome to drug lead: Identification of a small-molecule inhibitor of the SARS virus. Bioorg. ed. Chem. Lett., 16:830–833, 2006.CrossRefGoogle Scholar
  29. 337.
    R. J. Driscoll, M. G. Younquist, and J. D. Baldeschwieler. Atomic-scale imaging of DNA using scanning tunneling microscopy. Nature, 346:294–296, 1990.CrossRefGoogle Scholar
  30. 338.
    R. O. Dror, D. H. Arlow, D. W. Borhani, M.. Jensen, S. Piana, and D. E. Shaw. dentification of two distinct inactive conformations of the 2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl. Acad. Sci. USA., 106:4689–4694, 2009.Google Scholar
  31. 339.
    Y. Duan and P. A. Kollman. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 282:740–744, 23 October 1998.Google Scholar
  32. 340.
    Y. Duan, P. A. Kollman, and S. C. Harvey. Protein folding and beyond. In E. Keinam and I. Schechter, editors, Chemistry for the 21st Century. Wiley-VCH, Weinheim, Germany, 2000.Google Scholar
  33. 358.
    L. Eldén and L. Wittmeyer-Koch. Numerical Analysis. Academic Press, Inc., San Diego, CA, 1990.Google Scholar
  34. 362.
    A. Engel. New frontiers in high-resolution electron microscopy. In T. Schwede and M. Peitsch, editors, Computational Structural Biology. Methods and Applications, pages 623–654. World Scientific, Singapore, 2008.Google Scholar
  35. 363.
    S.W. Englander, L. Mayne, and M. M. G. Krishna. Protein folding and misfolding: Mechanism and principles. Quar. Rev. Biophys., 40:287–326, 2007.Google Scholar
  36. 364.
    M. Enserink. Full-genome sequencing paved the way from spores to a suspect. cience, 321:898–899, 2008.Google Scholar
  37. 366.
    D. L. Ensign and V. S. Pande. The Fip35 WW domain folds with structural and mechanistic heterogeneity in molecular dynamics simulations. Biophys. J., 96:L53–L55, 2009.CrossRefGoogle Scholar
  38. 368.
    D. L. Ermak and J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys., 69:1352–1360, 1978.CrossRefGoogle Scholar
  39. 370.
    U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. smooth particle mesh Ewald method. J. Chem. Phys., 103:8577–8593, 1995.CrossRefGoogle Scholar
  40. 394.
    A. M. Ferrenberg, D. P. Landau, and Y. J.Wong. Monte Carlo simulations: Hidden errors from “good” random number generators. Phys. Rev. Lett., 69:3382–3384, 1992.CrossRefGoogle Scholar
  41. 395.
    M. Ferrer, T. A. Kapoor, T. Strassmaier, W. Weissenhorn, J. J. Skehel, D. Oprian, S. L. Schreiber, D. C.Wiley, and S. C. Harrison. Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nature Struc. Biol., 6:953–960, 1999.CrossRefGoogle Scholar
  42. 396.
    A. Fersht. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding.W. H. Freeman and Company, New York, NY, 1999.Google Scholar
  43. 397.
    A. R. Fersht. Perspectives. Nature, 9:650–654, 2008.Google Scholar
  44. 400.
    M. J. Field. A Practical Introduction to the Simulation of Molecular Systems. ambridge University Press, Cambridge, UK, second edition, 2007.Google Scholar
  45. 418.
    J.J. Forman, P.A. Clemons, S.L. Schreiber, and S.J. Haggarty. SpectralNET–an ap- plication for spectral graph analysis and visualization. BMC Bioinformatics, 6:260, 2005.CrossRefGoogle Scholar
  46. 424.
    H. Frauenfelder, S. G. Sligar, and P. G. Wolynes. The energy landscapes and motions of proteins. Science, 254:1598–1603, 1991.CrossRefGoogle Scholar
  47. 425.
    H. Frauenfelder and P. G. Wolynes. Biomolecules: Where the physics of complexity and simplicity meet. Phys. Today, 47:58–64, 1994.CrossRefGoogle Scholar
  48. 426.
    P. L. Freddolino, F. Liu, M. Gruebele, and K. Schulten. Ten-microsecond molecu- lar dynamics simulation of a fast-folding WW domain. Biophys. J., 94:L75–L77, 2008.CrossRefGoogle Scholar
  49. 427.
    P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and K. Schulten. olecular dynamics simulations of the complete satellite tobacco mosaic virus. tructure, 14:437–449, 2006.Google Scholar
  50. 428.
    P. L. Freddolino, S. Park, B. Roux, and K. Schulten. Force field bias in protein folding simulations. Biophys. J., 96:3772–3780, 2009.CrossRefGoogle Scholar
  51. 433.
    F. B. Fuller. The writhing number of a space curve. Proc. Natl. Acad. Sci. USA, 68:815–819, 1971.MathSciNetMATHCrossRefGoogle Scholar
  52. 474.
    L. Goodman, V. Pophristic, and F. Weinhold. Origin of methyl internal rotation barriers. Acc. Chem. Res., 32:983–993, 1999.CrossRefGoogle Scholar
  53. 476.
    H. Gould, J. Tobochnik, andW. Christian. An Introduction to Computer Simulation Methods: Applications to Physical Systems. Addison-Wesley, San Francisco, CA, third edition, 2007.Google Scholar
  54. 487.
    H. Grubm¨uller. Predicting slow structural transitions in macromolecular systems: Conformational flooding. Phys. Rev. E, 52:2893–2906, 1995.Google Scholar
  55. 494.
    P. J. Hagerman. Straightening out the bends in curved DNA. Biochim. Biophys. cta, 1131:125–132, 1992.CrossRefGoogle Scholar
  56. 516.
    T. E. Haran, J. D. Kahn, and D. M. Crothers. Sequence elements responsible for DNA curvature. J. Mol. Biol., 244:135–143, 1994.CrossRefGoogle Scholar
  57. 518.
    J. Harms, F. Schluenzen, R. Zarivach, A. Bashan, S. Gat, I. Agmon, H. Bartels, F. Franceschi, and A. Yonath. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell, 107:679–688, 2001.CrossRefGoogle Scholar
  58. 523.
    S. C. Harvey and H. A. Gabb. Conformational transitions using molecular dynamics with minimum biasing. Biopolymers, 33:1167–1172, 1993.CrossRefGoogle Scholar
  59. 529.
    M. A. El Hassan and C. R. Calladine. Conformational characteristics of DNA: Empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Phil. Trans. Math. Phys. Engin. Sci., 355:43–100, 1997.MATHCrossRefGoogle Scholar
  60. 531.
    W. A. Hasteline. Beyond chicken soup. Sci. Amer., 285:56–63, 2001.Google Scholar
  61. 540.
    C. E. Heitsch. Analyzing the branching degree of RNA viral genomes: a hep- atitis C case study. The Ninth Annual International Conference on Research in Computational Molecular Biology (RECOMB 2005), 2005.Google Scholar
  62. 541.
    D. M. Held, J. D. Kissel, J. T. Patterson, D. G. Nickens, and D. H. Burke. HIV-1 inactivation by nucleic acid aptamers. Front Biosci., 11:89–112, 2006.CrossRefGoogle Scholar
  63. 584.
    P. A. Hunt. QSAR using 2D descriptors and TRIPOS’ SIMCA. J. Comput.-Aided Mol. Design, 13:453–467, 1999.CrossRefGoogle Scholar
  64. 597.
    J. A. Izaguirre, D. P. Catarello, J. M. Wozniak, and R. D. Skeel. Langevin stabilization of molecular dynamics. J. Comput. Phys., 114:2090–2098, 2001.Google Scholar
  65. 598.
    J. A. Izaguirre and S. S. Hampton. Shadow hybrid Monte Carlo: An efficient propagator in phase space of macromolecules. J. Chem. Phys., 200:581–604, 2004.MATHGoogle Scholar
  66. 606.
    D. Janeˇziˇc and B. Orel. Implicit Runge-Kutta method for molecular dynamics integration. J. Chem. Info. Comput. Sci., 33:252–257, 1993.Google Scholar
  67. 617.
    I. K. Jordan, F. A. Kondrashov, I. A. Adzhubei, Y. I. Wolf, E. V. Koonin, A. S. ondrashov, and S. Sunyaev. A universal trend of amino acid gain and loss in protein evolution. Nature, 433:633–638, 2005.Google Scholar
  68. 622.
    W. L. Jorgensen and J. Tirado-Rives. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci. SA, 102:6665–6670, 2005.CrossRefGoogle Scholar
  69. 626.
    J. Kaiser. Death prompts a review of gene therapy vector. Science, 317:580, 2007.CrossRefGoogle Scholar
  70. 634.
    F. Kang. The Hamiltonian way for computing Hamiltonian dynamics. In R. Spigler, editor, Applied and Industrial Mathematics, pages 17–35. Kluwer Academic, Dordrecht, The Netherlands, 1990.Google Scholar
  71. 637.
    R. M. Karp. Mathematical challenges from genomics and molecular biology. otices Amer. Math. Soc., 49:544–553, 2002.Google Scholar
  72. 655.
    B. J. Klein and G. R. Pack. Calculations of the spatial distribution of charge density in the environment of DNA. Biopolymers, 22:2331–2352, 1983.CrossRefGoogle Scholar
  73. 670.
    P. A. Kollman and K. A. Dill. Decisions in force field development: An alternative to those described by Roterman et al. J. Biomol. Struct. Dyn., 8:1103–1107, 1991.CrossRefGoogle Scholar
  74. 672.
    J. H. Konnert and W. A. Hendrickson. A restrained-parameter thermal-factor refinement procedure. Acta Crystallogr., A36:344–350, 1980.Google Scholar
  75. 676.
    R. Kornberg and J. O. Thomas. Chromatin structure: Oligomers of histones. cience, 184:865–868, 1974.Google Scholar
  76. 679.
    C. Korth, B. C. H. May, F. E. Cohen, and S. B. Prusiner. Acridine and phenoth- iazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. SA, 98:9836–9841, 2001.CrossRefGoogle Scholar
  77. 710.
    S.Y. Le, R. Nussinov, and J. Maizel. Tree graphs of RNA secondary structures and their comparisons. Comput. Biomed. Res., 22:461–473, 1989.CrossRefGoogle Scholar
  78. 729.
    P. D. Leeson and B. Springthorpe. The influence of drug-like concepts on decision- making in medical chemistry. Nat. Rev. Drug Disc., 6:881–890, 2007.CrossRefGoogle Scholar
  79. 746.
    C. Levinthal. How to fold graciously. In P. Debrunner, J. C. M. Tsibris, and E. M¨unch, editors, Mossbauer Spectroscopy in Biological Systems, Proceedings of a Meeting held at Allerton House, Monticello, Illinois, page 22, Urbana, Illinois, 1969. University of Illinois Press.Google Scholar
  80. 747.
    M. Levitt. How many base-pairs per turn does DNA have in solution and in chro- matin? Some theoretical calculations. Proc. Natl. Acad. Sci. USA, 75:640–644, 1978.CrossRefGoogle Scholar
  81. 748.
    M. Levitt. Computer simulation of DNA double-helix dynamics. Cold Spring Harbor Symp. Quant. Biol., 47:251–275, 1983.CrossRefGoogle Scholar
  82. 752.
    M. Levitt and A. Warshel. Extreme conformational flexibility of the furanose ring in DNA and RNA. J. Amer. Chem. Soc., 100:2607–2613, 1978.CrossRefGoogle Scholar
  83. 753.
    R. M. Levy and E. Gallicchio. Computer simulations with explicit solvent: Recent progress in the thermodynamic decomposition of free energies, and in modeling electrostatic effects. Annu. Rev. Phys. Chem., 49:531–567, 1998.CrossRefGoogle Scholar
  84. 766.
    S. Lifson. Potential energy functions for structural molecular biology. In D. B. avies, W. Saenger, and S. S. Danyluk, editors, Methods in Structural Molecular Biology, pages 359–385. Plenum Press, London, England, 1981.Google Scholar
  85. 770.
    J.-H. Lii and N. L. Allinger. Directional hydrogen bonding in the MM3 force field: II. J. Comput. Chem., 19:1001–1016, 1998.CrossRefGoogle Scholar
  86. 810.
    A. D. MacKerell, Jr. and L. Nilsson. Molecular dynamics simulations of nucleic acid-protein complexes. Curr. Opin. Struct. Biol., 18:194–199, 2008.CrossRefGoogle Scholar
  87. 817.
    L. J. Maher, III. Mechanisms of DNA bending. Curr. Opin. Struct. Biol., 2:688–694, 1998.Google Scholar
  88. 827.
    C. Mao, T. LaBean, J. H. Reif, and N. C. Seeman. Logical computation us- ing algorithmic self-assembly of DNA triple crossover molecules. Nature, 407: 493–496, 2000.CrossRefGoogle Scholar
  89. 845.
    K. M. Mazur. Accurate DNA dynamics without accurate long-range electrostatics. . Amer. Chem. Soc., 120:10928–10937, 1998.Google Scholar
  90. 846.
    S. J. McBryant, J. Klonoski, T. C. Sorensen, S. S. Norskog, S. Williams, M. G. esch, J. A. Toombs, III, S. E. Hobdey, and J. C. Hansen. Determinants of histone H4 N-terminal domain function during nucleosomal array oligomerization. J. Biol. hem., 284:16716–16722, 2009.Google Scholar
  91. 848.
    J. A. McCammon and S. C. Harvey. Dynamics of Proteins and Nucleic Acids. ambridge University Press, Cambridge, MA, 1987.Google Scholar
  92. 852.
    L. McFail-Isom, C. C. Sines, and L. D. Williams. DNA structure: Cations in charge? Curr. Opin. Struct. Biol., 9:298–304, 1999.CrossRefGoogle Scholar
  93. 853.
    J. D. McGhee, J. M. Nickol, G. Felsenfeld, and D. C. Rau. Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell, 33:831–841, 1983.CrossRefGoogle Scholar
  94. 870.
    S. Miyamoto and P. A. Kollman. SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem., 13:952–962, 1992.CrossRefGoogle Scholar
  95. 874.
    R. Montangue and R. Batey. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature, 441:1772–1775, 2006.Google Scholar
  96. 884.
    Y. Mu, D. S. Kosov, and G. Stock. Conformational dynamics of trialanine in water.Google Scholar
  97. 888.
    B. Munos. Lessons from 60 years of pharmaceutical innovation. Nature Rev., 8:959–968, 2009.CrossRefGoogle Scholar
  98. 892.
    A. Nahvi, N. Sudarsan, M. S. Ebert, X. Zou, K. L. Brown, and R. R. Breaker. enetic control by a metabolite binding mRNA. Chem. Biol., 9:1043–1049, 2002.CrossRefGoogle Scholar
  99. 894.
    S. G. Nash and J. Nocedal. A numerical study of the limited memory BFGS method and the truncated-Newton method for large-scale optimization. SIAM J. pt., 1:358–372, 1991.MathSciNetMATHCrossRefGoogle Scholar
  100. 930.
    E. Nudler. Flipping riboswitches. Cell, 126:19–22, 2006.Google Scholar
  101. 936.
    K. Okazaki, N. Koga, S. Takada, J. N. Onuchic, and P. G. Wolynes. Multiple- basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations. Proc. Natl. Acad. Sci. USA, 103:11844–11849, 2006.CrossRefGoogle Scholar
  102. 948.
    W. K. Olson and J. L. Sussman. How flexible is the furanose ring? 1. A comparison of experimental and theoretical studies. J. Amer. Chem. Soc., 104:270–278, 1982.Google Scholar
  103. 974.
    eferences [970] S. Patel and C. L. Brooks, III. Fluctuating charge force fields: recent developments and applications from small molecules to macromolecular biological systems. Mol. im., 32:231–249, 2006.Google Scholar
  104. 976.
    L. Pauling. The nature of bond orbitals and the origin of potential barriers to internal rotation in molecules. Proc. Natl. Acad. Sci., 44:211–216, 1958.CrossRefGoogle Scholar
  105. 987.
    M. B. Pepys, J. Herbert, W. L. Hutchinson, G. A. Tennent, H. J. Lachmann, J. R. Gallimore, L. B. Lovat, T. Bartfai, A. Alanine, C. Hertel, T. Hoffmann, R. Jakob-Roetne, R. D. Norcross, J. A. Kemp, K. Yamamura, M. Suzuki, G. W. aylor, S. Murray, D. Thompson, A. Purvis, S. Kolstoe, S. P. Wood, and P. N. awkins. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature, 417:254–259, 2002.Google Scholar
  106. 994.
    T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu. Relaxation of a single DNA molecule observed by optical microscopy. Science, 264:822–825, 1994.CrossRefGoogle Scholar
  107. 996.
    C. S. Peskin and T. Schlick. Molecular dynamics by the backward Euler’s method. omm. Pure App. Math., 42:1001–1031, 1989.Google Scholar
  108. 1003.
    O. Pillai, A. B. Dhanikula, and R. Panchagnula. Drug delivery: An odyssey of 100 years. Curr. Opin. Chem. Biol., 5:439–446, 2001.CrossRefGoogle Scholar
  109. 1009.
    R. H. A. Plasterk. RNA silencing: The genome’s immune system. Science, 296:1263–1265, 2002.CrossRefGoogle Scholar
  110. 1013.
    G. E. Plum, D. S. Pilch, S. F. Singleton, and K. J. Breslauer. Nucleic acid hy- bridization: Triplex stability and energetics. Ann. Rev. Biophys. Biomol. Struc., 24:319–350, 1995.CrossRefGoogle Scholar
  111. 1034.
    R. Radhakrishnan, K. Arora, Y. Wang, W. A. Beard, S. H. Wilson, and T. Schlick. egulation of DNA repair fidelity by molecular checkpoints: “gates” in DNA polymerase β’s substrate selection. Biochem., 45:15142–15156, 2006.CrossRefGoogle Scholar
  112. 1035.
    R. Radhakrishnan and T. Schlick. Biomolecular free energy profiles by a shoot- ing/umbrella sampling protocol, “BOLAS”. J. Chem. Phys., 121:2436–2444, 2004.CrossRefGoogle Scholar
  113. 1038.
    R. Radhakrishnan and T. Schlick. Correct and incorrect nucleotide incorporation pathways in dna polymerase β’s. Biochem. Biophys. Res. Comm., 350:521–529, 2006.CrossRefGoogle Scholar
  114. 1044.
    T. D. Rasmussen, P. Ren, J. W. Ponder, and F. Jensen. Force field modeling of conformational energies: importance of multipole moments and intramolecular polarization. Int. J. Quant. Chem., 107:1390–1395, 2007.CrossRefGoogle Scholar
  115. 1047.
    J. S. Read and G. F. Joyce. A ribozyme composed of only two different nucleotides. ature, 420:841–844, 2002.Google Scholar
  116. 1053.
    S. A. Rice, M. Nagasawa, and H. Morawetz. Polyelectrolyte Solutions: A Theo- retical Introduction, volume 2 of Molecular Biology: An International Series of Monographs and Textbooks. Academic Press, New York, NY, 1961.Google Scholar
  117. 1067.
    J. Rogal and P. G. Bolhuis. Multiple state transition path sampling. J. Chem. Phys., 129:224107, 2008.CrossRefGoogle Scholar
  118. 1070.
    V. Rokhlin. Rapid solution of integral equations of classical potential theory. . Comput. Phys., 60:187–207, 1985.Google Scholar
  119. 1079.
    H. Rozenberg, D. Rabinovich, F. Frolow, R. S. Hegde, and Z. Shakked. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets. Proc. Natl. Acad. Sci. USA, 95:15194–15199, 1998.CrossRefGoogle Scholar
  120. 1116.
    T. Schlick. Engineering teams up with computer-simulation and visualization tools to probe biomolecular mechanisms. Biophys. J., 85:1, 2003.CrossRefGoogle Scholar
  121. 1117.
    T. Schlick. The critical collaboration between art and science: Applying an ex- periment on a bird in an air pump to the ramifications of genomics on society. eonardo, 38:323–329, 2005.Google Scholar
  122. 1133.
    T. Schlick and W. K. Olson. Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA. Science, 257:1110–1115, 1992.CrossRefGoogle Scholar
  123. 1135.
    T. Schlick and M. L. Overton. A powerful truncated Newton method for potential energy functions. J. Comput. Chem., 8:1025–1039, 1987.MathSciNetCrossRefGoogle Scholar
  124. 1158.
    R. A. Scott and H. A. Scheraga. Conformational analysis of macromolecules. I. the rotational isomeric states of the normal hydrocarbons. J. Chem. Phys., 44:3054–3069, 1966.Google Scholar
  125. 1169.
    H. M. Senn and W. Thiel. QM/MM studies of enzymes. Curr. Opin. Chem. Biol., 11:182–187, 2007.CrossRefGoogle Scholar
  126. 1177.
    C. D. Sherrill, B. G. Sumpter, M. O. Sinnokrot, M. S. Marshall, E. G. Hohenstein, R. C. Walker, and I. R. Gould. Assessment of standard force field models against high-quality ab initio potential curves for prototypes of ππ, CH/π, and SH/π interactions. J. Comput. Chem., 30:2187–2193, 2009. doi:10.1002/jcc.21226.Google Scholar
  127. 1184.
    B. K. Shoichet. Virtual screening of chemical libraries. Nature, 432:862–865, 2004.Google Scholar
  128. 1188.
    A. Siddiqui-Jain, C. L. Grand, D. J. Bearss, and L. H. Hurley. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA, 99:11593–11598, 2002.CrossRefGoogle Scholar
  129. 1205.
    Robert D. Skeel. Integration schemes for molecular dynamics and related applications. In M. Ainsworth, J. Levesley, and M. Marletta, editors, The Grad- uate Student’s Guide to Numerical Analysis, volume 26 of Springer Series in Computational Mathematics, pages 119–176. Springer-Verlag, New York, NY, 1999.Google Scholar
  130. 1222.
    G. Srinivasan, C. M. James, and J. A. Krzycki. Pyrrolysine encoded by UAG in Archaea: Charging of a UAG-decoding specialized tRNA. Science, 296: 1459–1462, 2002.CrossRefGoogle Scholar
  131. 1234.
    D. Strahs, X. Qian, D. Barash, and T. Schlick. Sequence-dependent solution structure of 13 TATA/TBP complexes. Biopolymers, 69:216–243, 2003.CrossRefGoogle Scholar
  132. 1235.
    D. Strahs and T. Schlick. A-tract bending: Insights into experimental structures by computational models. J. Mol. Biol., 301:643–666, 2000.CrossRefGoogle Scholar
  133. 1238.
    eferences [1233] T. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon. The manipulation of single biomolecules. Physics Today, 54:46–51, October 2001.Google Scholar
  134. 1247.
    C. R. Sweet, P. Petrine, V. S. Pande, and J. A. Izaguirre. Normal mode partitioning of Langevin dynamics for biomolecules. J. Chem. Phys., 128:145101, 2008.CrossRefGoogle Scholar
  135. 1252.
    E. Tajkhorshid, P. Nollert, M. Ø Jensen, L. J. W. Miercke, J. O’Connell, R. M. troud, and K. Schulten. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science, 296:525–530, 2002.Google Scholar
  136. 1258.
    S. Tara, A. H. Elcock, P. D. Kirchhoff, J. M. Briggs, Z. Radic, P. Taylor, and J. A. McCammon. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge. Biopolymers, 46:465–474, 1998.CrossRefGoogle Scholar
  137. 1260.
    V. Tereshko, G. Minasov, and M. Egli. A “Hydra-Ion” spine in B-DNA minor groove. J. Amer. Chem. Soc., 121:3590–3595, 1999.CrossRefGoogle Scholar
  138. 1265.
    B. Tidor, K. K. Irikura, B. R. Brooks, and M. Karplus. Dynamics of DNA oligomers. J. Biomol. Struct. Dynam., 1:231–252, 1983.CrossRefGoogle Scholar
  139. 1286.
    C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249:505–570, 1990.CrossRefGoogle Scholar
  140. 1287.
    T. Tuschl, C. Gohlke, T. M. Jovin, E. Westhof, and F. Eckstein. A three- dimensional model for the hammerhead ribozyme based on fluorescence measure- ments. Science, 266:785–789, 1994.CrossRefGoogle Scholar
  141. 1323.
    J. ˇSponer, J. Leszczy´nski, and P. Hobza. Structures and energies of hydrogen- bonded DNA base pairs: A nonempirical study with inclusion of electron correlation. J. Phys. Chem., 100:1965–1974, 1996.Google Scholar
  142. 1335.
    J. Wang, P. Cieplak, and P. A. Kollman. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem., 21:1049–1074, 2000.CrossRefGoogle Scholar
  143. 1342.
    eferences [1337] Y. Wang and D. J. Patel. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1:263–282, 1993.Google Scholar
  144. 1344.
    Z. Wang and R. M. Harshey. Crucial role for DNA supercoiling in Mu transposi- tion: A kinetic study. Proc. Natl. Acad. Sci. USA, 91:699–703, 1994.CrossRefGoogle Scholar
  145. 1346.
    A. Warshel. The consistent force field and its quantum mechanical extension. n G. A. Segal, editor, Modern Theoretical Chemistry, volume 7. Plenum Press, New York, NY, 1977.Google Scholar
  146. 1351.
    A.Warshel and S. T. Russell. Calculations of electrostatic interactions in biological systems and in solutions. Q. Rev. Biophys., 17:283–422, 1984.CrossRefGoogle Scholar
  147. 1352.
    A. Warshel, P. K. Sharma, M. Kato, and W. W. Parson. Modeling electrostatic effects in proteins. Biochim. Biophys. Acta, 1764:1647–1676, 2006.CrossRefGoogle Scholar
  148. 1361.
    J. D. Watson and F. H. C. Crick. The structure of DNA. Cold Spr. Harb. Symp. uant. Biol., XVIII:123–131, 1953.Google Scholar
  149. 1368.
    B. Werth. The Billion-Dollar Molecule: One Company’s Quest for the Perfect Drug. Simon & Schuster, New York, NY, 1994.Google Scholar
  150. 1377.
    P. Willett. Structural similarity measures for database searching. In P. von Ragué Schleyer (Editor-in Chief), N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, and H. F. Schaefer, III, editors, Encyclopedia of Computational Chemistry, volume 4, pages 2748–2756. John Wiley & Sons, West Sussex, England, 1998.Google Scholar
  151. 1378.
    L. D. Williams and L. J. Maher, III. Electrostatic mechanisms of DNA deforma- tion. Annu. Rev. Biophys. Biomol. Struct., 29:497–521, 2000.CrossRefGoogle Scholar
  152. 1389.
    A. Wolffe. Chromatin Structure and Function. Academic Press Inc., San Diego, CA, 1995.Google Scholar
  153. 1396.
    P. E. Wright and H. J. Dyson. Intrinsically unstructured proteins: Reassessing the protein structure-function paradigm. J. Mol. Biol., 293:321–331, 1999.CrossRefGoogle Scholar
  154. 1404.
    D. Xie and T. Schlick. Visualization of chemical databases using the singular value decomposition and truncated-Newton minimization. In C. A. Floudas and P. Parda- los, editors, Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches, pages 267–286. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.Google Scholar
  155. 1417.
    Y. Yonetani, Y. Maruyama, F. Hirata, and H. Kono. Comparison of DNA hydration patterns obtained using two distinct computational methods, molecular dynam- ics simulation and three-dimensional reference interactions site model theory. . Chem. Phys., 128:185102, 2008.Google Scholar
  156. 1423.
    M. A. Young, S. Gonfloni, G. Superti-Furga, B. Roux, and J. Kuriyan. Dy- namic coupling between SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell, 105:115–126, 2001.CrossRefGoogle Scholar
  157. 1428.
    H. Yu. Extending the size limit of protein nuclear magnetic resonance. Proc. Natl. cad. Sci. USA, 96:332–334, 1999.CrossRefGoogle Scholar
  158. 1462.
    O. Zimmerman and U. H. E. Hansmann. Understanding protein folding: small proteins in silico. Biochim. Biophys. Acta, 1784:252–258, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Courant Institute of Mathematical Sciences and Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations