High-Energy Physics

  • Anthony Gregerson
  • Michael J. Schulte
  • Katherine Compton


High-energy physics (HEP) applications represent a cutting-edge field for signal processing systems. HEP applications require sophisticated hardware-based systems to process the massive amounts of data that they generate. Scientists use these systems to identify and isolate the fundamental particles produced during collisions in particle accelerators. This chapter examines the fundamental characteristics of HEP applications and the technical and developmental challenges that shape the design of signal processing systems for HEP. These challenges include huge data rates, low latencies, evolving specifications, and long design times. We cover techniques for HEP system design, including scalable designs, testing and verification, dataflow-based modeling, and design partitioning. Throughout, we provide concrete examples from the design of the Level-1 Trigger System for the Compact Muon Solenoid (CMS) Experiment at the Large Hadron Collider (LHC). We also discuss some of the new physics algorithms to be included in the proposed Super LHC upgrade.


Higgs Boson Compact Muon Solenoid Particle Accelerator Signal Processing System Trigger System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abolins, M., Edmunds, D., Laurens, P., Linnemann, J., Pi, B.: A high luminosity trigger design for the Tevatron collider experiment in DO. IEEE Trans. Nuclear Science 36, 384–389 (1989)CrossRefGoogle Scholar
  2. 2.
    Adler, S.S., et al.: PHENIX on-line systems. Nucl. Inst. and Meth. in Phys. Res. A 449, 560–592 (2003)CrossRefGoogle Scholar
  3. 3.
    Altegoer, J., et al.: The trigger system of the NOMAD experiment. Tech. Rep. CERN-EP 98-202, CERN (1998)Google Scholar
  4. 4.
    Amidei, D., et al.: A two level FASTBUS based trigger system for CDF. Tech. Rep. FERMILAB-Pub-87/187-E, The Enrico Fermi Institute (1987)Google Scholar
  5. 5.
    Amsler, C., et al.: Review of particle physics, 2008–2009. Review of particle properties, 2008- 2009. Phys. Lett. B 667 (2008)Google Scholar
  6. 6.
    Ang, R., Dutt, N.: Equivalent design representations and transformations for interactive scheduling (1992)Google Scholar
  7. 7.
    Anikeev, K., et al.: CDF Level 2 Trigger upgrade (2005)Google Scholar
  8. 8.
    Anvar, S., et al.: The charged trigger system of NA48 at CERN. Nucl. Inst. and Meth. in Phys. Res. A 419, 686–694 (1998)CrossRefGoogle Scholar
  9. 9.
    Azuelos, G., et al.: The Beyond the Standard Model Working Group: Summary report (2002)Google Scholar
  10. 10.
    Bachtis, M.: SLHC CMS Calorimeter Trigger dataflow and algorithms (2008)Google Scholar
  11. 11.
    Bachtis, M.: SLHC Calorimeter Trigger algorithms (2009)Google Scholar
  12. 12.
    Baudrenghien, P., Höfle, W., Kotzian, G., Rossi, V.: Digital signal processing for the multibunch LHC transverse feedback system. Tech. Rep. LHC-PROJECT-Report-1151, CERN (2008)Google Scholar
  13. 13.
    Bene, P., et al.: First-level charged particle tirgger for the L3 detector. Nucl. Inst. and Meth. in Phys. Res. A 306, 150–158 (1991)CrossRefGoogle Scholar
  14. 14.
    Bhattacharyya, S.S., Brebner, G., Eker, J., Janneck, J.W., Mattavelli, M., von Platen, C., Raulet, M.: OpenDF — A dataflow toolset for reconfigurable hardware and multicore systems. In: Proceedings of the Swedish Workshop on Multi-Core Computing, pp. 43–49. Ronneby, Sweden (2008)Google Scholar
  15. 15.
    Bhattacharyya, S.S., Kedilaya, S., Plishker,W., Sane, N., Shen, C., Zaki, G.: The DSPCAD Integrative Command Line Environment: Introduction to DICE version 1. Tech. Rep. UMIACSTR- 2009–13, Institute for Advanced Computer Studies, University of Maryland at College Park (2009)Google Scholar
  16. 16.
    Bieser, F.S., et al.: The STAR trigger. Nucl. Inst. and Meth. in Phys. Res. A 499, 766–777 (2003)CrossRefGoogle Scholar
  17. 17.
    Blaising, J., et al.: Performance of the L3 second level trigger implemented for the LEP II with the SGS Thomson C104 packet switch. IEEE Trans. Nuclear Science 45, 1765–1770 (1998)CrossRefGoogle Scholar
  18. 18.
    Busson, P.: Overview of the new CMS electromagnetic calorimeter electronics. In: 8th Workshop on Electronics for LHC Experiments, pp. 324–328 (2003)Google Scholar
  19. 19.
    Canale, V., et al.: The DELPHI trigger system at LEP200. Tech. Rep. DELPHI 99-7 DAS 88, CERN (1999)Google Scholar
  20. 20.
    Caspers, F., et al.: The 4.8 GHz LHC Schottky pick-up system. Tech. Rep. LHC-PROJECTReport- 1031, CERN (2007)Google Scholar
  21. 21.
    Chung, Y., et al.: The Level-3 Trigger at the CDF experiment at the Tevatron Run II. IEEE Transactions on Nuclear Science 52 (2005)CrossRefGoogle Scholar
  22. 22.
    CMS Collaborations: CMS TriDaS Project: Technical Design Report; 1, The Trigger systems. Tech. rep., CERN (2000)Google Scholar
  23. 23.
    Covarelli, R.: The CMS High-Level Trigger. In: CIPANP ’09 (2009)Google Scholar
  24. 24.
    Darriulat, P.: The discovery of the W and Z particles, a personal recollection. The European Physical Journal C - Particles and Fields 34(1), 33–40 (2004)CrossRefGoogle Scholar
  25. 25.
    Day, C.T., Jacobsen, R.G., Kral, J.F., Levi, M.E., White, J.L.: The BaBar trigger, readout and event gathering system. In: CHEP95 (1995)Google Scholar
  26. 26.
    Dugne, J., Fredriksson, S., Hansson, J.: Preon Trinity - A schematic model of leptons, quarks and heavy vector bosons. Europhysics Letters 57, 188 (2002)CrossRefGoogle Scholar
  27. 27.
    Fang, W.J., Wu, A.C.H.: Performance-driven multi-FPGA partitioning using functional clustering and replication. In: Proceedings of the 35th Design Automation Conference (1998)Google Scholar
  28. 28.
    Flores-Castillo, L.: Standard Model Higgs searches at the LHC. Nuclear Physics B 177–178, 229–233 (2004)Google Scholar
  29. 29.
    Fuljahn, T., et al.: Concept of the first level trigger for Hera-B. IEEE Trans. on Nucl. Sci. 45(4), 1782–1786 (1998)CrossRefGoogle Scholar
  30. 30.
    Gianotti, F., Mangano, M., Virdee, T.: Physics potential and experimental challenges of the LHC luminosity upgrade. European Physical Journal C 39, 293 (2005)CrossRefGoogle Scholar
  31. 31.
    Godbole, R.: Predictions for Higgs and SUSY Higgs properties and their signatures at the hadron colliders (1999)Google Scholar
  32. 32.
    Gordon, H., et al.: The Axial-Field Spectrometer at the CERN ISR. In: 1981 INS International Symposium on Nuclear Radiation Detectors (1981)Google Scholar
  33. 33.
    Gregerson, A., Farmahini-Farahani, A., Buchli, B., Naumov, S., Bachtis, M., Schulte, M., Compton, K., Smith, W., Dasu, S.: FPGA design analysis of the Clustering Algorithm for the CERN Large Hadron Collider. In: Proceedings of the 17th IEEE Symposium on Field- Programmable Custom Computing Machines (2009)Google Scholar
  34. 34.
    Gregerson, A., Farmahini-Farahani, A., Plishker, W., Xie, Z., Compton, K., Schulte, M.: Advances in architectures and tools for FPGAs and their impact on the design of complex systems for particle physics. In: Topical Workshop on Electronics in Particle Physics (2009)Google Scholar
  35. 35.
    Hsu, C., Keceli, F., Ko, M., Shahparnia, S., Bhattacharyya, S.S.: DIF: An interchange format for dataflow-based design tools. In: Proceedings of the International Workshop on Systems, Architectures, Modeling, and Simulation, pp. 423–432 (2004)Google Scholar
  36. 36.
    Jacobs, D.A.: Applications of ESOP, a fast microprogrammable processor, in high energy physics experiments at CERN. Computer Physics Communications 22(2–3), 261–267 (1981)CrossRefGoogle Scholar
  37. 37.
    JDEM: The Joint Dark Energy Mission (2009). URL
  38. 38.
    Kane, G., Pierce, A.: Perspectives of LHC Physics. World Scientific (2008)Google Scholar
  39. 39.
    Kisselev, A., Petrov, V., Ryutin, R.: 5-dimensional quantum gravity effects in exclusive double diffractive events. Physics Letters B 630, 100–105 (2005)Google Scholar
  40. 40.
    Kopec, D., Tamang, S.: Failures in complex systems: case studies, causes, and possible remedies. SIGCSE Bull. 39(2), 180–184 (2007)CrossRefGoogle Scholar
  41. 41.
    LeCompte, T., Diehl, H.T.: The CDF and D0 upgrades for Run II. Annu. Rev. Nucl. Part. Sci 50, 71–117 (2000)CrossRefGoogle Scholar
  42. 42.
    Moreira, P., Toifl, T., Kluge, A., Cervelli, G., Faccio, F.,Marchioro, A., Christiansen, J.: G-link and gigabit ethernet compliant serializer for LHC data transmission. In: 47th IEEE Nuclear Science Symposium and Medical Imaging Conference (2000)Google Scholar
  43. 43.
    Navarro, A.P., Frank, M.: Event reconstruction in the LHCb online cluster. Tech. Rep. LHCb- CONF-2009-018, CERN (2009)Google Scholar
  44. 44.
    Pal, S., Bharadwaj, S., Kar, S.: Can extra-dimensional effects replace dark matter? Physics Letters B 609, 195–199 (2005)CrossRefGoogle Scholar
  45. 45.
    Parodi, F.: Upgrade of the tracking and trigger system at ATLAS and CMS (2009)Google Scholar
  46. 46.
    Pastore, F.: ATLAS trigger: Design and commissioning. In: ICCMSE Symposium: Computing in Experimental High Energy Physics (2009)Google Scholar
  47. 47.
    Smith, W.: Trigger and data acquisition for the Super LHC. In: Proceedings of the 10th Workshop on electronics for LHC Experiments, pp. 34–37 (2004)Google Scholar
  48. 48.
    Smith, W., Chumney, P., Dasu, S., Jaworski, M., Lackey, J.: CMS Regional Calorimeter Trigger high speed ASICs. In: Proceedings of the 6th Workshop on Electronics for LHC Experiments, pp. 2000–2010 (2000)Google Scholar
  49. 49.
    Sriram, I., Govindarajan, S., Srinivasn, V., Kaul, M., Vemuri, R.: An integrated partitioning and synthesis system for dynamically reconfigurable multi-FPGA architectures (1998)Google Scholar
  50. 50.
    Stamen, R.: The ATLAS trigger (2005)Google Scholar
  51. 51.
    Stettler, M., Iles, G., Hansen, M., Foudas, C., Jones, J., Rose, A.: The CMS Global Calorimeter Trigger hardware design. In: 12th Workshop on Electronics for LHC and Future Experiments (2006)Google Scholar
  52. 52.
    Varela, J.: Timing and synchronization in the LHC experiments. In: Proceedings of the 6th Workshop on Electronics for LHC Experiments, pp. 2000–2010 (2000)Google Scholar
  53. 53.
    Varela, J.: CMS L1 Trigger control systems (2002)Google Scholar
  54. 54.
    Waloschek, P.: Fast trigger techniques. Physica Scripta 23, 480–486 (1981)CrossRefGoogle Scholar
  55. 55.
    Wiedemann, H.: Particle accelerator physics. Springer Verlag (2007)Google Scholar
  56. 56.
    Wilson, E.: An introduction to particle accelerators. Oxford University Press (2001)Google Scholar
  57. 57.
    Yadgar, A., Orna, G., Assf, S.: Parallel sat solving for model checking (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anthony Gregerson
    • 1
  • Michael J. Schulte
    • 1
  • Katherine Compton
    • 1
  1. 1.University of WisconsinMadisonUSA

Personalised recommendations