Video Compression

  • Yu-Han Chen
  • Liang-Gee Chen


In this chapter, we show the demands of video compression and introduce video coding systems with state-of-the-art signal processing techniques. In the first section, we show the evolution of video coding standards. The coding standards are developed to overcome the problems of limited storage capacity and limited communication bandwidth for video applications. In the second section, the basic components of a video coding system are introduced. The redundant information in a video sequence is explored and removed to achieve data compression. In the third section, we will introduce several emergent video applications (including High Definition TeleVision (HDTV), streaming, surveillance, and multiview videos) and the corresponding video coding systems. People will not stop pursuing move vivid video services. Video coding systems with better coding performance and visual quality will be continuously developed in the future.


Discrete Cosine Transform Video Code Scalable Video Code Video Compression Enhancement Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Douglas A. Kerr. Chrominance Subsampling in Digital Images. Available: November 2005.
  2. 2.
    Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s-Part 2: Video. ISO/IEC 11172-2 (MPEG-1 Video), ISO/IEC JTC 1, March 1993.Google Scholar
  3. 3.
    Generic Coding of Moving Pictures and Associated Audio Information-Part 2: Video. ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG-2 Video), ITU-T and ISO/IEC JTC 1, May 1996.Google Scholar
  4. 4.
    Video Codec for Audiovisual Services at p ?64 Kbit/s. ITU-T Rec. H.261, ITU-T, November 1990.Google Scholar
  5. 5.
    Video Coding for Low Bit Rate Communication. ITU-T Rec. H.263, ITU-T, November 1995.Google Scholar
  6. 6.
    Coding of Audio-Visual Objects-Part 2: Visual. ISO/IEC 14496-2 (MPEG-4 Visual), ISO/IEC JTC 1, April 1999.Google Scholar
  7. 7.
    Advanced Video Coding for Generic Audiovisual Services. ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, May 2003.Google Scholar
  8. 8.
    A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G. J. Sullivan. Performance comparison of video coding standards using Lagragian coder control. In Proc. IEEE International Conference on Image Processing (ICIP), pages 501–504, 2002.Google Scholar
  9. 9.
    Yu-Wen Huang, Ching-Yeh Chen, Chen-Han Tsai, Chun-Fu Shen, and Liang-Gee Chen. Survey on block matching motion estimation algorithms and architectures with new results. Journal of VLSI Signal Processing, 42(3):297–320, March 2006.MATHCrossRefGoogle Scholar
  10. 10.
    Thomas Wiegand, Gary J. Sullivan, Gisle Bjntegaard, and Ajay Luthra. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7):560–576, July 2003.CrossRefGoogle Scholar
  11. 11.
    K. Ramamohan Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, August 1990.Google Scholar
  12. 12.
    Gray and David L. Neuhoff. Quantization. IEEE Transactions on Information Theory, 44(6):2325–2383, October 1998.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Sullivan, P. Topiwala, and A. Luthra. The H.264 advanced video coding standard : Overview and introduction to the fidelity range extensions. In Proc. SPIE Conference on Applications of Digital Image Processing XXVII, August 2004.Google Scholar
  14. 14.
    D. Marpe and et al. H.264/MPEG4-AVC fidelity range extensions : Tools, profiles, performance, and application areas. In Proc. IEEE International Conference on Image Processing (ICIP), volume 1, pages 593–596, September 2005.Google Scholar
  15. 15.
    T. Wiegand and B. Girod. Multi-Frame Motion-Compensated Prediction for Video Transmission. Kluwer Academic Publishers, September 2001.Google Scholar
  16. 16.
    G. J. Sullivan and T. Wiegand. Rate-distortion optimization for video compression. IEEE Signal Processing Magazine, 15(6):74–90, November 1998.CrossRefGoogle Scholar
  17. 17.
    T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan. Rate-constrained coder control and comparison of video coding standards. IEEE Transactions on Circuits and Systems for Video Technology, 13(7):688–703, July 2003.CrossRefGoogle Scholar
  18. 18.
    D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7):620–644, July 2003.CrossRefGoogle Scholar
  19. 19.
    J. Reichel, H. Schwarz, and M. Wien. Working Draft 4 of ISO/IEC 14496-10:2005/AMD3 Scalable Video Coding. ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, Doc. N7555, January 2005.Google Scholar
  20. 20.
    Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17:1103–1120, September 2007.CrossRefGoogle Scholar
  21. 21.
    B. S. Wilburn, M. Smulski, H.-H. K. Lee, and M. A. Horowitz. Light field video camera. In Proceedings of Media Processors, SPIE ElectronicImaging, volume 4674, pages 29–36, 2002.Google Scholar
  22. 22.
    C. Zhang and T. Chen. A self-reconfigurable camera array. In Eurographics symposium on Rendering, 2004.Google Scholar
  23. 23.
    Nick Holliman. 3d display systems. In Handbook of Optoelectronics, chapter 3. Taylor and Francis, 2006.Google Scholar
  24. 24.
    Philipp Merkle, Aljoscha Smolic abd Karsten Muller, and Thomas Wiegand. Efficient prediction structures for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 17(11):1461–1473, November 2007.CrossRefGoogle Scholar
  25. 25.
    ISO/IEC JTC 1/SC 29/WG11 N1088. Proposed draft amendament No. 3 to 13818-2 (multiview profile). MPEG-2, 1995.Google Scholar
  26. 26.
    S.-Y. Chien, S.-H. Yu, L.-F. Ding, Y.-N. Huang, and L.-G. Chen. Efficient stereo video coding system for immersive teleconference with two-stage hybrid disparity estimation algorithm. In Proc. of IEEE International Conference on Image Processing, 2003.Google Scholar
  27. 27.
    ISO/IEC JTC1/SC29/WG11 N6501. Requirements on multi-view video coding. 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Graduate Institute of Electronics Engineering and Department of Electrical EngineeringNational Taiwan UniversityTaipeiROC

Personalised recommendations