DSP Instruction Set Simulation

Chapter

Abstract

An instruction set simulator is an important tool for system architects and for software developers. However, when implementing a simulator, there are many choices which can be made and that have an effect on the speed and the accuracy of the simulation. They are especially relevant to DSP simulation. This chapter explains the different strategies for implementing a simulator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    August, D., Chang, J., Girbal, S., Gracia-Perez, D., Mouchard, G., Penry, D.A., Temam, O., Vachharajani, N.: An open simulation environment and library for complex architecture design and collaborative development, IEEE Computer Architecture Letters, 6(2):45–48 (2007)CrossRefGoogle Scholar
  2. 2.
    Austin, T., Larson, E., Ernst, D.: SimpleScalar: An infrastructure for computer system modeling. Computer, 35(2):59–67, (2002)CrossRefGoogle Scholar
  3. 3.
    Azevedo, R., Rigo, S., Bartholomeu, M., Araujo, G., Araujo, C., Barros.,E.: The ArchC architecture description language and tools, Int. J. Parallel Program., 33(5):453–484, (2005)MATHCrossRefGoogle Scholar
  4. 4.
    Bartholomeu, M., Azevedo, R., Rigo, S., Araujo, G.: Optimizations for compiled simulation using instruction type information, Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2004), pages 74–81, (2004)Google Scholar
  5. 5.
    Bell, J.R.: Threaded code, Commun. ACM, 16(6):370–372 (1973)CrossRefGoogle Scholar
  6. 6.
    Brandner, F., Fellnhofer, A., Krall, A., Riegler, D.: Fast and accurate simulation using the LLVM compiler framework, RAPIDO ’09: 1st Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, (2009)Google Scholar
  7. 7.
    Burtscher, M., Ganusov, I.: Automatic synthesis of high-speed processor simulators, MICRO 37: Proceedings of the 37th annual IEEE/ACM International Symposium on Microarchitecture, pages 55–66, (2004)Google Scholar
  8. 8.
    Bermudo, N., Horspool, R.N., Krall, A.: Control flow graph reconstruction for reverse compilation of assembly language programs with delayed instructions, SCAM’05: Proceedings of the Fifth InternationalWorkshop on Source Code Analysis andManipulation, pages 107–116, (2005)Google Scholar
  9. 9.
    Brandner, F.: Precise simulation of interrupts using a rollback mechanism, SCOPES ’09: Proceedings of the 12th International Workshop on Software and Compilers for Embedded Systems, pages 71–80, (2009)Google Scholar
  10. 10.
    Cofer, R.C., Harding, B.: Rapid System Prototyping with FPGAs: Accelerating the Design Process, Newnes, (2005)Google Scholar
  11. 11.
    Chung, E.S., Hoe, J.C., Falsafi, B.: ProtoFlex: Co-simulation for component-wise FPGA emulator development, WARFP ’06: In Proceedings of the 2nd Workshop on Architecture Research using FPGA Platforms, (2006)Google Scholar
  12. 12.
    Cmelik, B., Keppel, D.: Shade: A fast instruction-set simulator for execution profiling, SIGMETRICS ’94: Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 128–137, (1994)Google Scholar
  13. 13.
    Chung, E.S., Nurvitadhi, E., Hoe, J.C., Falsafi, B., Mai, K.: A complexity-effective architecture for accelerating full-system multiprocessor simulations using FPGAs. FPGA ’08: Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays, pages 77–86, (2008)Google Scholar
  14. 14.
    Chung, E.S., Papamichael, M.K., Nurvitadhi, E., Hoe, J.C., Mai, K., Falsafi, B.: ProtoFlex: Towards scalable, full-system multiprocessor simulations using FPGAs. ACM Transactions on Reconfigurable Technology and Systems, 2(2):1–32, (2009)CrossRefGoogle Scholar
  15. 15.
    Chiou, D., Sunwoo, D., Kim, J., Patil, N., Reinhart, W.H., Johnson, D.E., Xu, Z.: The FAST methodology for high-speed SoC/computer simulation, ICCAD ’07: Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design, pages 295–302, (2007)Google Scholar
  16. 16.
    Chiou, D., Sunwoo, D., Kim, J., Patil, N., Reinhart, W.H., Johnson, D.E., Keefe, J., Angepat, H.: FPGA-accelerated simulation technologies (FAST): Fast, full-system, cycle-accurate simulators, MICRO ’07: Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pages 249–261, (2007)Google Scholar
  17. 17.
    Chiou, D., Sanjeliwala, H., Sunwoo, D., Xu, J.Z., Patil, N.: FPGA-based fast, cycle-accurate, full-system simulators, WARFP’06: Proceedings of the second Workshop on Architecture Research using FPGA Platforms, (2006)Google Scholar
  18. 18.
    Dehnert, J.C., Grant, B.K, Banning, J.P., Johnson, R., Kistler, T., Klaiber, A.,Mattson, J.: The Transmeta Code MorphingTM software: Using speculation, recovery, and adaptive retranslation to address real-life challenges, CGO ’03: Proceedings of the International Symposium on Code Generation and Optimization, pages 15–24, (2003)Google Scholar
  19. 19.
    Ebcio˘glu, K.,Altman, E.R.: DAISY: Dynamic compilation for 100% architectural compatibility, ISCA ’97: Proceedings of the 24th International Symposium on Computer Architecture, pages 26–37, (1997)Google Scholar
  20. 20.
    Emer, J., Ahuja, P., Borch, E., Klauser, A., Luk, C.-K., Manne, S., Mukherjee, S.S., Patil, H., Wallace, S., Binkert, N., Espasa, R., Juan, T.: Asim: A performance model framework, Computer, 35(2):68–76, (2002)CrossRefGoogle Scholar
  21. 21.
    Ebcio˘glu, K., Altman, E.R., Gschwind, M., Sathaye, S.: Optimizations and oracle parallelism with dynamic translation, MICRO 32: Proceedings of the 32nd annual ACM/IEEE International Symposium on Microarchitecture, pages 284–295, (1999)Google Scholar
  22. 22.
    Ebcio˘glu, K., Altman, E., Gschwind, M., Sathaye, S.: Dynamic binary translation and optimization, IEEE Transactions on Computers, 50(6):529–548, (2001)CrossRefGoogle Scholar
  23. 23.
    Errico, J.D., Qin, W.: Constructing portable compiled instruction-set simulators - an ADLdriven approach, DATE ’06: Proceedings of the Conference on Design, Automation and Test in Europe, pages 112–117, (2006)Google Scholar
  24. 24.
    Farfeleder, S., Krall, A., Horspool, R.N.: Ultra fast cycle-accurate compiled emulation of inorder pipelined architectures, EUROMICRO Journal of Systems Architecture, 53(8):501–510, (2007)CrossRefGoogle Scholar
  25. 25.
    Fytraki, S., Pnevmatikatos, D.: ReSim, a trace-driven, reconfigurable ILP processor simulator, DATE ’09: Proceedings of Design, Automation and Test in Europe 2009, (2009)Google Scholar
  26. 26.
    Fauth, A., Van Praet, J., Freericks, M.: Describing instruction set processors using nML, EDTC ’95: Proceedings of the 1995 European Conference on Design and Test, pages 503–507, (1995)Google Scholar
  27. 27.
    Gschwind, M., Altman, E.: Optimization and precise exceptions in dynamic compilation, ACM SIGARCH Computer Architecture News, 29(1):66–74, (2001)CrossRefGoogle Scholar
  28. 28.
    Gschwind, M., Altman, E.R., Sathaye, S., Ledak, P., Appenzeller, D.: Dynamic and transparent binary translation, Computer, 33(3):54–59, (2000)CrossRefGoogle Scholar
  29. 29.
    Gao, L., Kraemer, S., Leupers, R., Ascheid, G., Meyr, H.. A fast and generic hybrid simulation approach using C virtual machine, CASES ’07: Proceedings of the 2007 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pages 3–12, (2007)Google Scholar
  30. 30.
    Goossens, G., Lanneer, D., Geurts, W., Van Praet, J.: Design of ASIPs in multi-processor SoCs using the Chess/Checkers retargetable tool suite, International Symposium on Systemon-Chip, pages 1–4, (2006)Google Scholar
  31. 31.
    Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., Nicolau, A.: EXPRESSION: A language for architecture exploration through compiler/simulator retargetability, DATE ’99: Proceedings of the Conference on Design, Automation and Test in Europe, pages 485–490, (1999)Google Scholar
  32. 32.
    Ienne, P., Leupers, R.: Customizable Embedded Processors: Design Technologies and Applications (Systems on Silicon), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, (2006)Google Scholar
  33. 33.
    Jones, D., Topham, N.P.: High speed CPU simulation using LTU dynamic binary translation. In HiPEAC’09: Proceedings of the 4th International Conference on High Performance Embedded Architectures and Compilers, pages 50–64, (2009)Google Scholar
  34. 34.
    Krall, A., Farfeleder, S., Horspool, R.N.: Ultra fast cycle-accurate compiled emulation of inorder pipelined architectures, SAMOS ’05: Proceedings of the International Workshop on Systems, Architectures, Modeling, and Simulation, LNCS 3553, pages 222–231, (2005)Google Scholar
  35. 35.
    Kudlugi,M., Hassoun, S., Selvidge, C., Pryor, D.: A transaction-based unified simulation/emulation architecture for functional verification. DAC ’01: Proceedings of the 38th Conference on Design Automation, pages 623–628, (2001)Google Scholar
  36. 36.
    Klint, P.: Interpretation techniques, Software: Practice and Experience, 11(9):963– 973, (1981)CrossRefGoogle Scholar
  37. 37.
    Larus, J. Assemblers, linkers and the SPIM simulator, in Patterson, D.A., Hennessy, J.L., editors, Computer Organization and Design: The Hardware/software Interface, Morgan Kaufmann, (2005)Google Scholar
  38. 38.
    Mills, C., Ahalt, S.C., Fowler, J.: Compiled instruction set simulation, Software: Practice and Experience, 21(8):877–889, (1991)CrossRefGoogle Scholar
  39. 39.
    Magnusson, P.S.. Efficient instruction cache simulation and execution profiling with a threaded-code interpreter, WSC ’97: Proceedings of the 29th Conference on Winter Simulation, pages 1093–1100, (1997)Google Scholar
  40. 40.
    May, C.: Mimic: a fast System/370 simulator, Symposium on Interpreters and Interpretive Techniques, pages 1–13, (1987)Google Scholar
  41. 41.
    Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform, Computer, 35(2):50–58, (2002)CrossRefGoogle Scholar
  42. 42.
    Mishra, P. and Dutt, N.: Processor Description Languages, Volume 1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, (2008)Google Scholar
  43. 43.
    Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., Hoffmann, A.: A universal technique for fast and flexible instruction-set architecture simulation, DAC ’02: Proceedings of the 39th Conference on Design Automation, pages 22–27, (2002)Google Scholar
  44. 44.
    Nakamura, Y., Hosokawa, K.. Fast FPGA-emulation-based simulation environment for custom processors, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E89-A(12):3464–3470, (2006)Google Scholar
  45. 45.
    Nakamura, Y., Hosokawa, K., Kuroda, K., Yoshikawa, K., Yoshimura, T.: A fast hardware/-software co-verification method for system-on-a-chip by using a C/C++ simulator and FPGA emulator with shared register communication, DAC ’04: Proceedings of the 41st annual Conference on Design Automation, pages 299–304, (2004)Google Scholar
  46. 46.
    Pees, S., Hoffmann, A., Meyr, H.: Retargetable compiled simulation of embedded processors using a machine description language, ACM Transactions on Design Automation of Electronic Systems, 5(4):815–834, (2000)CrossRefGoogle Scholar
  47. 47.
    Proebsting, T.A.: Optimizing an ANSI C interpreter with superoperators, POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 322–332, (1995)Google Scholar
  48. 48.
    Pellauer, M., Vijayaraghavan, M., Adler, M., Arvind, Emer, J.: Quick performance models quickly: Closely-coupled partitioned simulation on FPGAs, ISPASS ’08: IEEE International Symposium on Performance Analysis of Systems and Software, pages 1–10, (2008)Google Scholar
  49. 49.
    Pellauer, M., Vijayaraghavan, M., Adler, M., Arvind, Emer, J.: A-Ports: An efficient abstraction for cycle-accurate performance models on FPGAs, FPGA ’08: Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays, pages 87–96, (2008)Google Scholar
  50. 50.
    Roeven, H., Coninx, J., Ade, M.: CoolFlux DSP: The embedded ultra low power Cprogrammable DSP core, GSPx’04: International Signal Processing Conference, pages 1–7, (2004)Google Scholar
  51. 51.
    Reshadi, M., Dutt, N.: Generic pipelined processor modeling and high performance cycleaccurate simulator generation, DATE ’05: Proceedings of the Conference on Design, Automation and Test in Europe, pages 786–791, (2005)Google Scholar
  52. 52.
    Reshadi, M., Dutt, N., Mishra, P.: A retargetable framework for instruction-set architecture simulation, ACM Transactions on Embedded Computing Systems, 5(2):431–452, (2006)CrossRefGoogle Scholar
  53. 53.
    Rosenblum, M., Herrod, S.A.,Witchel, E., Gupta, A.: Complete computer system simulation: The SimOS approach, IEEE Parallel & Distributed Technology, 3(4):34–43, (1995)CrossRefGoogle Scholar
  54. 54.
    Reshadi, M., Mishra, P., Dutt, N.: Instruction set compiled simulation: A technique for fast and flexible instruction set simulation, Proceedings of the 40th Conference on Design Automation, pages 758–763, (2003)Google Scholar
  55. 55.
    Reshadi, M., Mishra, P., Dutt, N.: Hybrid-compiled simulation: An efficient technique for instruction-set architecture simulation, ACM Transactions on Embedded Computing Systems, 8(3):1–27, (2009)CrossRefGoogle Scholar
  56. 56.
    Schnerr, J., Bringmann, O., Rosenstiel, W.: Cycle accurate binary translation for simulation acceleration in rapid prototyping of SoCs, DATE ’05: Proceedings of the Conference on Design, Automation and Test in Europe, pages 792–797, (2005)Google Scholar
  57. 57.
    Sites, R.L., Chernoff, A., Kirk, M.B., Marks, M.P., Robinson, S.G.: Binary translation, Communications of the ACM, 36(2):69–81, (1993)CrossRefGoogle Scholar
  58. 58.
    Schnerr, J., Haug, G., Rosenstiel, W.: Instruction set emulation for rapid prototyping of SoCs, DATE ’03: Proceedings of the Conference on Design, Automation and Test in Europe, pages 562–567, (2003)Google Scholar
  59. 59.
    Sathaye, S., Ledak, P., Leblanc, J., Kosonocky, S., Gschwind, M., Fritts, J., Bright, A., Altman, E., Agricola, C.: BOA: Targeting multi-gigahertz with binary translation, Proceedings of the 1999 Workshop on Binary Translation, pages 2–11, (1999)Google Scholar
  60. 60.
    Suh, T., Lee, H.-H.S., Lu, S.-L., Shen, J.: Initial observations of hardware/software cosimulation using FPGA in architectural research, WARFP’06: In Proceedings of the 2nd Workshop on Architecture Research using FPGA Platforms, (2006)Google Scholar
  61. 61.
    Smith, E., Nair, R.: Virtual Machines, Morgan Kaufman, (2005)Google Scholar
  62. 62.
    Open SystemC Initiative. http://www.systemc.org/home.
  63. 63.
    Vachharajani, M., Vachharajani, N., August, D.I.: The Liberty Structural Specification Language: A high-level modeling language for component reuse, PLDI ’04: Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, pages 195–206, (2004)Google Scholar
  64. 64.
    Vachharajani, M., Vachharajani, N., Penry, D.A., Blome, J.A., Malik, S., and August, D.I.: The Liberty Simulation Environment: A deliberate approach to high-level system modeling, ACM Transactions on Computer Systems, 24(3):211–249, (2006)CrossRefGoogle Scholar
  65. 65.
    Witchel, E., Rosenblum, M.: Embra: Fast and flexible machine simulation, SIGMETRICS ’96: Proceedings of the 1996 ACMSIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pages 68–79, (1996)Google Scholar
  66. 66.
    Yi, J.J., Lilja, D.J.: Simulation of computer architectures: Simulators, benchmarks, methodologies, and recommendations, IEEE Transactions on Computers, 55(3):268–280, (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Florian Brandner
    • 1
  • Nigel Horspool
    • 2
  • Andreas Krall
    • 1
  1. 1.Institut für ComputersprachenTechnische Universität WienViennaAustria
  2. 2.Department of Computer ScienceUniversity of VictoriaVictoriaCanada

Personalised recommendations