Advertisement

Compiling for VLIW DSPs

  • Christoph W. Kessler
Chapter

Abstract

This chapter describes fundamental compiler techniques for VLIW DSP processors. We begin with a review of VLIW DSP architecture concepts, as far as relevant for the compiler writer. As a case study, we consider the TI TMS320C62xTM clustered VLIW DSP processor family. We survey the main tasks of VLIW DSP code generation, discuss instruction selection, cluster assignment, instruction scheduling and register allocation in some greater detail, and present selected techniques for these, both heuristic and optimal ones. Some emphasis is put on phase ordering problems and on phase coupled and integrated code generation techniques.

Keywords

Clock Cycle Basic Block Digital Signal Processor Register Allocation Instruction Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfred V. Aho, Mahadevan Ganapathi, and Steven W.K. Tjiang. Code Generation Using Tree Matching and Dynamic Programming. ACM Transactions on Programming Languages and Systems, 11(4):491–516, October 1989.CrossRefGoogle Scholar
  2. 2.
    Alexander Aiken and Alexandru Nicolau. Optimal loop parallelization. SIGPLAN Notices, 23(7):308–317, July 1988.CrossRefGoogle Scholar
  3. 3.
    Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan. Software pipelining. ACM Computing Surveys, 27(3), September 1995.CrossRefGoogle Scholar
  4. 4.
    Analog Devices. TigerSHARC embedded processor ADSP-TS201S. Data sheet, www.analog.com/en/embedded-processing-dsp/tigersharc, 2006.
  5. 5.
    Andrew W. Appel and Lal George. Optimal Spilling for CISC Machines with Few Registers. In Proc. ACM conf. on Programming language design and implementation, pages 243–253. ACM Press, 2001.Google Scholar
  6. 6.
    Guido Araujo and Sharad Malik. Optimal code generation for embedded memory nonhomogeneous register architectures. In Proc. 7th Int. Symposium on System Synthesis, pages 36–41, September 1995.Google Scholar
  7. 7.
    Rosa M. Badia, Fermin Sanchez, and Jordi Cortadella. OSP: Optimal Software Pipelining with Minimum Register Pressure. Technical Report UPC-DAC-1996-25, DAC Dept. d’arquitectura de Computadors, Univ. Polytecnica de Catalunya, Barcelona, Campus Nord. Modul D6, E-08071 Barcelona, Spain, June 1996.Google Scholar
  8. 8.
    Vasanth Bala and Norman Rubin. Efficient instruction scheduling using finite state automata. In Proc. 28th int. symp. on miocroarchitecture (MICRO-28), pages 46–56. IEEE, 1995.Google Scholar
  9. 9.
    Steven Bashford and Rainer Leupers. Phase-coupled mapping of data flow graphs to irregular data paths. Design Automation for Embedded Systems (DAES), 4(2/3):1–50, 1999.Google Scholar
  10. 10.
    Andrzej Bednarski and Christoph Kessler. Optimal integrated VLIW code generation with integer linear programming. In Proc. Int. Euro-Par 2006 Conference. Springer LNCS, August 2006.Google Scholar
  11. 11.
    D. Bernstein, M.C.Golumbic, Y.Mansour, R.Y. Pinter, D.Q.Goldin, H. Krawczyk, and I. Nahshon. Spill code minimization techniques for optimizing compilers. In Proc. Int. Conf. on Progr. Lang. Design and Implem., pages 258–263, 1989.Google Scholar
  12. 12.
    F. Bouchez, A. Darte, C. Guillon, and F. Rastello. Register allocation: what does the NPcompleteness proof of Chaitin et al. really prove? […]. In Proc. 19th int. workshop on languages and compilers for parallel computing, New Orleans, November 2006.Google Scholar
  13. 13.
    Thomas S. Brasier, Philip H. Sweany, Steven J. Beaty, and Steve Carr. Craig: A practical framework for combining instruction scheduling and register assignment. In Proc. Int. Conf. on Parallel Architectures and Compilation Techniques (PACT’95), 1995.Google Scholar
  14. 14.
    Preston Briggs, Keith Cooper, Ken Kennedy, and Linda Torczon. Coloring heuristics for register allocation. In Proc. Int. Conf. on Progr. Lang. Design and Implem., pages 275–284, 1989.Google Scholar
  15. 15.
    Preston Briggs, Keith Cooper, and Linda Torczon. Rematerialization. In Proc. Int. Conf. on Progr. Lang. Design and Implem., pages 311–321, 1992.Google Scholar
  16. 16.
    Philip Brisk, Ajay K. Verma, and Paolo Ienne. Optimistic chordal coloring: a coalescing heuristic for SSA form programs. Des. Autom. Embed. Syst., 13:115–137, 2009.CrossRefGoogle Scholar
  17. 17.
    G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W. Markstein. Register allocation via coloring. Computer Languages, 6:47–57, 1981.CrossRefGoogle Scholar
  18. 18.
    Chia-Ming Chang, Chien-Ming Chen, and Chung-Ta King. Using integer linear programming for instruction scheduling and register allocation in multi-issue processors. Computers Mathematics and Applications, 34(9):1–14, 1997.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chung-Kai Chen, Ling-Hua Tseng, Shih-Chang Chen, Young-Jia Lin, Yi-Ping You, Chia-Han Lu, and Jenq-Kuen Lee. Enabling compiler flow for embedded VLIW DSP processors with distributed register files. In Proc. LCTES’07, pages 146–148. ACM, 2007.Google Scholar
  20. 20.
    Hong-Chich Chou and Chung-Ping Chung. An Optimal Instruction Scheduler for Superscalar Processors. IEEE Trans. on Parallel and Distr. Syst., 6(3):303–313, 1995.CrossRefGoogle Scholar
  21. 21.
    Josep M. Codina, Jesus Sánchez, and Antonio González. A unified modulo scheduling and register allocation technique for clus tered processors. In Proc. PACT-2001, September 2001.Google Scholar
  22. 22.
    Edward S. Davidson, Leonard E. Shar, A. Thampy Thomas, and Janak H. Patel. Effective control for pipelined computers. In Proc. Spring COMPCON75 Digest of Papers, pages 181–184. IEEE Computer Society, February 1975.Google Scholar
  23. 23.
    Giuseppe Desoli. Instruction assignment for clustered VLIW DSP compilers: a new approach. Technical Report HPL-98-13, HP Laboratories Cambridge, February 1998.Google Scholar
  24. 24.
    Dietmar Ebner. SSA-based code generation techniques for embedded architectures. PhD thesis, Technische Universität Wien, Vienna, Austria, June 2009.Google Scholar
  25. 25.
    Erik Eckstein, Oliver König, and Bernhard Scholz. Code instruction selection based on SSAgraphs. In A. Krall, editor, Proc. SCOPES-2003, Springer LNCS 2826, pages 49–65, 2003.Google Scholar
  26. 26.
    Alexandre E. Eichenberger and Edward S. Davidson. A reduced multipipeline machine description that preserves scheduling constraints. In Proc. PLDI’96, pages 12–22, New York, NY, USA, 1996. ACM Press.Google Scholar
  27. 27.
    Christine Eisenbeis and Antoine Sawaya. Optimal loop parallelization under register constraints. In Proc. 6th Workshop on Compilers for Parallel Computers (CPC’96), pages 245–259, December 1996.Google Scholar
  28. 28.
    Mattias Eriksson and Christoph Kessler. Integrated modulo scheduling for clustered VLIW architectures. In Proc. HiPEAC-2009 High-Performance and Embedded Architecture and Compilers, Paphos, Cyprus, pages 65–79. Springer LNCS 5409, January 2009.Google Scholar
  29. 29.
    Mattias Eriksson, Oskar Skoog, and Christoph Kessler. Optimal vs. heuristic integrated code generation for clustered VLIW architectures. In Proc. 11th int. workshop on software and compilers for embedded systems (SCOPES’08). ACM, 2008.Google Scholar
  30. 30.
    M. Anton Ertl. Optimal Code Selection in DAGs. In Proc. Int. Symposium on Principles of Programming Languages (POPL’99). ACM, 1999.Google Scholar
  31. 31.
    Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE Trans. Comput., C–30(7):478–490, July 1981.Google Scholar
  32. 32.
    Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded computing: a VLIW approach to architecture, compilers and tools. Elsevier / Morgan Kaufmann, 2005.Google Scholar
  33. 33.
    Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a Simple, Efficient Code Generator Generator. Letters of Programming Languages and Systems, 1(3):213–226, September 1992.CrossRefGoogle Scholar
  34. 34.
    Stefan M. Freudenberger and John C. Ruttenberg. Phase ordering of register allocation and instruction scheduling. In Code Generation: Concepts, Tools, Techniques [36], pages 146–170, 1992.Google Scholar
  35. 35.
    Anup Gangwar, M. Balakrishnan, and Anshul Kumar. Impact of intercluster communication mechanisms on ILP in clustered VLIW architectures. ACMTrans. Des. Autom. Electron. Syst., 12(1):1, 2007.CrossRefGoogle Scholar
  36. 36.
    Robert Giegerich and Susan L. Graham, editors. Code Generation - Concepts, Tools, Techniques. Springer Workshops in Computing, 1992.Google Scholar
  37. 37.
    R.S. Glanville and S.L. Graham. A New Method for Compiler Code Generation. In Proc. Int. Symposium on Principles of Programming Languages, pages 231–240, January 1978.Google Scholar
  38. 38.
    James R. Goodman and Wei-Chung Hsu. Code scheduling and register allocation in large basic blocks. In Proc. ACM Int. Conf. on Supercomputing, pages 442–452. ACM press, July 1988.Google Scholar
  39. 39.
    David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global register allocations using 0–1 integer programming. Softw. Pract. Exper., 26(8):929–965, 1996.CrossRefGoogle Scholar
  40. 40.
    R. Govindarajan, Erik Altman, and Guang Gao. A framework for resource-constrained rateoptimal software pipelining. IEEE Trans. Parallel and Distr. Syst., 7(11):1133–1149, November 1996.CrossRefGoogle Scholar
  41. 41.
    Daniel Grund and Sebastian Hack. A fast cutting-plane algorithm for optimal coalescing. In Proc. 16th int. conf. on compiler construction, pages 111–125, March 2007.Google Scholar
  42. 42.
    Sebastian Hack and Gerhard Goos. Optimal register allocation for SSA-form programs in polynomial time. Information Processing Letters, 98:150–155, 2006.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Todd Hahn, Eric Stotzer, Dineel Sule, andMike Asal. Compilation strategies for reducing code size on a VLIW processor with variable length instructions. In Proc. HiPEAC’08 conference, pages 147–160. Springer LNCS 4917, 2008.Google Scholar
  44. 44.
    Silvina Hanono and Srinivas Devadas. Instruction scheduling, resource allocation, and scheduling in the AVIV retargetable code generator. In Proc. Design Automation Conf. ACM, 1998.Google Scholar
  45. 45.
    W. A. Havanki. Treegion scheduling for VLIW processors. M.S. thesis, Dept. Electrical and Computer Engineering, North Carolina State Univ., Raleigh, NC, USA, 1997.Google Scholar
  46. 46.
    L.P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation. Journal of the ACM, 13(1):43–61, January 1966.MATHCrossRefGoogle Scholar
  47. 47.
    Wei-Chung Hsu, Charles N. Fischer, and James R. Goodman. On the minimization of loads/-stores in local register allocation. IEEE Trans. Softw. Eng., 15(10):1252–1262, October 1989.CrossRefGoogle Scholar
  48. 48.
    Wen-Mei Hwu, Scott A. Mahlke, WilliamY. Chen, Pohua P. Chang, Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. The superblock: an effective technique for VLIW and superscalar compilation. J. Supercomput., 7(1–2):229–248, 1993.CrossRefGoogle Scholar
  49. 49.
    Krishnan Kailas, Kemal Ebcioglu, and Ashok Agrawala. Cars: A new code generation framework for clustered ILP processors. In Proc. 7th Int. Symp. on High-Performance Computer Architecture (HPCA’01), pages 133–143. IEEE Computer Society, June 2001.Google Scholar
  50. 50.
    Daniel Kästner. Retargetable Postpass Optimisations by Integer Linear Programming. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 2000.Google Scholar
  51. 51.
    Christoph Kessler and Andrzej Bednarski. Optimal integrated code generation for clustered VLIW architectures. In Proc. ACM SIGPLAN Conf. on Languages, Compilers and Tools for Embedded Systems / Software and Compilers for Embedded Systems, LCTES-SCOPES’2002. ACM, June 2002.Google Scholar
  52. 52.
    Christoph Kessler and Andrzej Bednarski. Optimal integrated code generation for VLIW architectures. Concurrency and Computation: Practice and Experience, 18:1353–1390, 2006.CrossRefGoogle Scholar
  53. 53.
    Christoph Kessler, Andrzej Bednarski, and Mattias Eriksson. Classification and generation of schedules for VLIW processors. Concurrency and Computation: Practice and Experience, 19:2369–2389, 2007.CrossRefGoogle Scholar
  54. 54.
    Christoph W. Keßler. Scheduling Expression DAGs for Minimal Register Need. Computer Languages, 24(1):33–53, September 1998.MATHCrossRefGoogle Scholar
  55. 55.
    Tokuzo Kiyohara and John C. Gyllenhaal. Code scheduling for VLIW/superscalar processors with limited register files. In Proc. MICRO-25. IEEE CS Press, 1992.Google Scholar
  56. 56.
    Monica Lam. Software pipelining: An effective scheduling technique for VLIW machines. In Proc. CC’88, pages 318–328, July 1988.Google Scholar
  57. 57.
    Rainer Leupers. Retargetable Code Generation for Digital Signal Processors. Kluwer, 1997.Google Scholar
  58. 58.
    Rainer Leupers. Code Optimization Techniques for Embedded Processors. Kluwer, 2000.Google Scholar
  59. 59.
    Rainer Leupers. Instruction scheduling for clustered VLIW DSPs. In Proc. PACT’00 int. conference on parallel architectures and compilation. IEEE Computer Society, 2000.Google Scholar
  60. 60.
    Rainer Leupers and Steven Bashford. Graph-based code selection techniques for embedded processors. ACM TODAES, 5(4):794–814, October 2000.CrossRefGoogle Scholar
  61. 61.
    Rainer Leupers and Peter Marwedel. Time-constrained code compaction for DSPs. IEEE Transactions on VLSI Systems, 5(1):112–122, 1997.CrossRefGoogle Scholar
  62. 62.
    Dake Liu. Embedded DSP processor design. Morgan Kaufmann, 2008.Google Scholar
  63. 63.
    Josep Llosa, Antonio Gonzalez, Mateo Valero, and Eduard Ayguade. Swing Modulo Scheduling: A Lifetime-Sensitive Approach. In Proc. PACT’96 conference, pages 80–86. IEEE, 1996.Google Scholar
  64. 64.
    Josep Llosa, Mateo Valero, Eduard Ayguade, and Antonio Gonzalez. Hypernode reduction modulo scheduling. In Proc. MICRO-28, 1995.Google Scholar
  65. 65.
    M. Lorenz and P. Marwedel. Phase coupled code generation for DSPs using a genetic algorithm. In Proc. conf. on design automation and test in Europe (DATE’04), pages 1270–1275, 2004.Google Scholar
  66. 66.
    Scott A. Mahlke, David C. Lin,William Y. Chen, Richard E. Hank, and Roger A. Bringmann. Effective compiler support for predicated execution using the hyperblo ck. In Proc. MICRO-25, pages 45–54, December 1992.Google Scholar
  67. 67.
    Abid M. Malik, Michael Chase, Tyrel Russell, and Peter van Beek. An application of constraint programming to superblock instruction scheduling. In Proc. 14th Int. Conf. on Principles and Practice of Constraint Programming, pages 97–111, September 2008.Google Scholar
  68. 68.
    Waleed M. Meleis and Edward D. Davidson. Dual-issue scheduling with spills for binary trees. In Proc. 10th ACM-SIAM Symposium on Discrete Algorithms, pages 678–686. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.Google Scholar
  69. 69.
    Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.Google Scholar
  70. 70.
    Thomas Müller. Employing finite automata for resource scheduling. In Proc. 26th int. symp. on microarchitecture (MICRO-26), pages 12–20. IEEE, December 1993.Google Scholar
  71. 71.
    S. G. Nagarakatte and R. Govindarajan. Register allocation and optimal spill code scheduling in software pipelined loops using 0-1 integer linear programming formulation. In Proc. int. conf. on compiler construction (CC-2007), pages 126–140. Springer LNCS 4420, 2007.Google Scholar
  72. 72.
    Rahul Nagpal and Y. N. Srikant. Integrated temporal and spatial scheduling for extended operand clustered VLIW processors. In Proc. 1st conf. on Computing Frontiers, pages 457–470. ACM Press, 2004.Google Scholar
  73. 73.
    Steven Novack and Alexandru Nicolau. Mutation scheduling: A unified approach to compiling for fine-grained parallelism. In Proc. Workshop on compilers and languages for parallel computers (LCPC’94), pages 16–30. Springer LNCS 892, 1994.Google Scholar
  74. 74.
    NXP. Trimedia TM-1000. Data sheet, www.nxp.com, 1998.
  75. 75.
    Emre Ozer, Sanjeev Banerjia, and Thomas M. Conte. Unified assign and schedule: a new approach to scheduling for clustered register file microarchitectures. In Proc. 31st annual ACM/IEEE Int. Symposium on Microarchitecture, pages 308–315. IEEE CS Press, 1998.Google Scholar
  76. 76.
    Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Transactions on Programming Languages and Systems, 21(5), September 1999.CrossRefGoogle Scholar
  77. 77.
    Todd A. Proebsting and Christopher W. Fraser. Detecting pipeline structural hazards quickly. In Proc. 21st symp. on principles of programming languages (POPL’94), pages 280–286. ACM Press, 1994.Google Scholar
  78. 78.
    B. Rau and C. Glaeser. Some scheduling techniques and an easily schedulable horizontal architecture for high performance scientific computing. In Proc. 14th Annual Workshop on Microprogramming, pages 183–198, 1981.Google Scholar
  79. 79.
    B. Ramakrishna Rau, Vinod Kathail, and Shail Aditya. Machine-description driven compilers for EPIC and VLIW processors. Design Automation for Embedded Systems, 4:71–118, 1999. Appeared also as technical report HPL-98-40 of HP labs, Sep. 1998.Google Scholar
  80. 80.
    Richard Scales. Software development techniques for the TMS320C6201 DSP. Texas Instruments Application Report SPRA481, www.ti.com, December 1998.
  81. 81.
    Eric J. Stotzer and Ernst L. Leiss. Modulo scheduling without overlapped lifetimes. In Proc. LCTES-2009, pages 1–10. ACM, June 2009.Google Scholar
  82. 82.
    Texas Instruments, Inc. TMS320C62x DSP CPU and instruction set reference guide. Document SPRU731, focus.ti.com/lit/ug/spru731, 2006.Google Scholar
  83. 83.
    Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and Speed in Linear-scan Register Allocation. In Proc. ACM SIGPLAN Conf. on Progr. Lang. Design and Implem., pages 142–151, 1998.Google Scholar
  84. 84.
    Steven R. Vegdahl. A Dynamic-Programming Technique for Compacting Loops. In Proc. MICRO-25, pages 180–188. IEEE CS Press, 1992.Google Scholar
  85. 85.
    Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction scheduling using integer programming. In Proc. Int. Conf. on Progr. Lang. Design and Implem., pages 121–133, 2000.Google Scholar
  86. 86.
    Tom Wilson, Gary Grewal, Ben Halley, and Dilip Banerji. An integrated approach to retargetable code generation. In Proc. Int. Symposium on High-Level Synthesis, pages 70–75, May 1994.Google Scholar
  87. 87.
    Sebastian Winkel. Optimal global instruction scheduling for the Itanium processor architecture. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, September 2004.Google Scholar
  88. 88.
    Sebastian Winkel. Optimal versus heuristic global code scheduling. In Proc. MICRO-40, pages 43–55, 2007.Google Scholar
  89. 89.
    Hongbo Yang, Ramaswamy Govindarajan, Guang R. Gao, George Cai, and Ziang Hu. Exploiting schedule slacks for rate-optimal power-minimum software pipelining. In Proc. Workshop on Compilers and Operating Systems for Low Power (COLP-2002), September 2002.Google Scholar
  90. 90.
    Javier Zalamea, Josep Llosa, Eduard Ayguade, and Mateo Valero. Modulo scheduling with integrated register spilling for clustered VLIWarchitectures. In Proc. ACM/IEEE MICRO-34, pages 160–169, 2001.Google Scholar
  91. 91.
    Thomas Zeitlhofer and Bernhard Wess. Operation scheduling for parallel functional units using genetic algorithms. In Proc. Int. Conf. on ICASSP ’99: Proceedings of the Acoustics, Speech, and Signal Processing (ICASSP’99), pages 1997–2000. IEEE Computer Society, 1999.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer Science (IDA)Linköping UniversityLinköpingSweden

Personalised recommendations