Molecular Mechanism of Sphingomyelin-Specific Membrane Binding and Pore Formation by Actinoporins

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 677)


Actinoporins are potent pore-forming toxins produced by sea anemones. They readily form pores in membranes that contain sphingomyelin. Molecular mechanism of pore formation involves recognition of membrane sphingomyelin, firm binding to the membrane accompanied by the transfer of the N-terminal region to the lipid-water interface and oligomerization of three to four monomers with accompanying pore formation. Actinoporins are an important example of α-helical pore forming toxins, since the final conductive pathway is formed by amphipathic α-helices. Recent structural data indicates that actinoporins are not restricted to sea anemones, but are present also in other organisms. They are becoming an important tool and model system, due to their potency, specificity and similarity to other proteins.


Pore Formation Membrane Binding Agaricus Bisporus Surface Plasmon Resonance Analysis Model Lipid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderluh G, Maček P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 2002; 40:111–124.CrossRefPubMedGoogle Scholar
  2. 2.
    Basulto A, Perez VM, Noa Y et al. Immunohistochemical targeting of sea anemone cytolysins on tentacles, mesenteric filaments and isolated nematocysts of Stichodactyla helianthus. J Exp Zoolog A Comp Exp Biol 2006; 305:253–258.CrossRefGoogle Scholar
  3. 3.
    Alegre-Cebollada J, Oñaderra M, Gavilanes JG et al. Sea anemone actinoporins: the transition from a folded soluble state to a functionally active membrane-bound oligomeric pore. Curr Protein Pept Sci 2007; 8:558–572.CrossRefPubMedGoogle Scholar
  4. 4.
    Barlič A, Gutierrez-Aguirre I, Caaveiro JM et al. Lipid phase coexistence favors membrane insertion of equinatoxin-II, a pore-forming toxin from Actinia equina. J Biol Chem 2004; 279:34209–34216.CrossRefPubMedGoogle Scholar
  5. 5.
    Bakrač B, Gutierrez-Aguirre I, Podlesek Z et al. Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 2008; 283:18665–18677.CrossRefPubMedGoogle Scholar
  6. 6.
    Schon P, Garcia-Saez AJ, Malovrh P et al. Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Biophys J 2008; 95:691–698.CrossRefPubMedGoogle Scholar
  7. 7.
    Kawashima Y, Nagai H, Ishida M et al. Primary structure of echotoxin 2, an actinoporin-like hemolytic toxin from the salivary gland of the marine gastropod Monoplex echo. Toxicon 2003; 42:491–497.CrossRefPubMedGoogle Scholar
  8. 8.
    Gutierrez-Aguirre I, Trontelj P, Maček P et al. Membrane binding of zebrafish actinoporin-like protein: AF domains, a novel superfamily of cell membrane binding domains. Biochem J 2006; 398:381–392.CrossRefPubMedGoogle Scholar
  9. 9.
    Birck C, Damian L, Marty-Detraves C et al. A new lectin family with structure similarity to actinoporins revealed by the crystal structure of Xerocomus chrysenteron lectin XCL. J Mol Biol 2004; 344:1409–1420.CrossRefPubMedGoogle Scholar
  10. 10.
    Ottman C, Luberacki B, Kufner I et al. A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci USA 2009; 106:10359–10364.CrossRefGoogle Scholar
  11. 11.
    Carrizo ME, Capaldi S, Perduca M et al. The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J Biol Chem 2005; 280:10614–10623.CrossRefPubMedGoogle Scholar
  12. 12.
    Leonidas DD, Swamy BM, Hatzopoulos GN et al. Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin. J Mol Biol 2007; 368:1145–1161.CrossRefPubMedGoogle Scholar
  13. 13.
    Anderluh G, Maček P. Dissecting the actinoporin pore-forming mechanism. Structure 2003; 11:1312–1313.CrossRefPubMedGoogle Scholar
  14. 14.
    črnigoj Kristan K, Viero G, Dalla Serra M et al. Molecular mechanism of pore formation by actinoporins. Toxicon 2009; 54:1125–1134.CrossRefGoogle Scholar
  15. 15.
    Alvarez C, Mancheño JM, Martinez D et al. Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: Their interaction with membranes. Toxicon 2009; 54:1135–1147.CrossRefPubMedGoogle Scholar
  16. 16.
    Tejuca M, Anderluh G, Dalla Serra M. Sea anemone cytolysins as toxic components of immunotoxins. Toxicon 2009; 54:1206–1214.CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang XY, Yang WL, Chen HP et al. Cloning and characterization of an acidic cytolysin cDNA from sea anemone Sagartia rosea. Toxicon 2002; 40:1563–1569.CrossRefPubMedGoogle Scholar
  18. 18.
    Athanasiadis A, Anderluh G, Maček P et al. Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 2001; 9:341–346.CrossRefPubMedGoogle Scholar
  19. 19.
    Hinds MG, Zhang W, Anderluh G et al. Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J Mol Biol 2002; 315:1219–1229.CrossRefPubMedGoogle Scholar
  20. 20.
    Mancheño JM, Martin-Benito J, Martinez-Ripoll M et al. Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 2003; 11:1319–1328.CrossRefPubMedGoogle Scholar
  21. 21.
    Belmonte G, Menestrina G, Pederzolli C et al. Primary and secondary structure of a pore-forming toxin from the sea anemone, Actinia equina L. and its association with lipid vesicles. Biochim Biophys Acta 1994; 1192:197–204.CrossRefPubMedGoogle Scholar
  22. 22.
    Malovrh P, Viero G, Dalla Serra M et al. A novel mechanism of pore formation: membrane penetration by the N-terminal amphipathic region of equinatoxin. J Biol Chem 2003; 278:22678–22685.CrossRefPubMedGoogle Scholar
  23. 23.
    Malovrh P, Barlič A, Podlesek Z et al. Structure-function studies of tryptophan mutants of equinatoxin II, a sea anemone pore-forming protein. Biochem J 2000; 346:223–232.CrossRefPubMedGoogle Scholar
  24. 24.
    Hong Q, Gutierrez-Aguirre I, Barlič A et al. Two-step membrane binding by Equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J Biol Chem 2002; 277:41916–41924.CrossRefPubMedGoogle Scholar
  25. 25.
    Alegre-Cebollada J, Cunietti M, Herrero-Galan E et al. Calorimetric scrutiny of lipid binding by sticholysin II toxin mutants. J Mol Biol 2008; 382:920–930.CrossRefPubMedGoogle Scholar
  26. 26.
    Gouaux E. Channel-forming toxins: tales of transformation. Curr Opin Struct Biol 1997; 7:566–573.CrossRefPubMedGoogle Scholar
  27. 27.
    Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 2005; 88:91–142.CrossRefPubMedGoogle Scholar
  28. 28.
    Kristan K, Podlesek Z, Hojnik V et al. Pore formation by equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable beta-sandwich. J Biol Chem 2004; 279:46509–46517.CrossRefPubMedGoogle Scholar
  29. 29.
    Bernheimer AW, Avigad LS. Properties of a toxin from the sea anemone Stoichacis helianthus, including specific binding to sphingomyelin. Proc Natl Acad Sci USA 1976; 73:467–471.CrossRefPubMedGoogle Scholar
  30. 30.
    Alegre-Cebollada J, Lacadena V, Oñaderra M et al. Phenotypic selection and characterization of randomly produced nonhaemolytic mutants of the toxic sea anemone protein sticholysin II. FEBS Lett 2004; 575:14–18.CrossRefPubMedGoogle Scholar
  31. 31.
    Turk T, Maček P, Gubenšek F. Chemical modification of equinatoxin II, a lethal and cytolytic toxin from the sea anemone Actinia equina L. Toxicon 1989; 27:375–384.CrossRefPubMedGoogle Scholar
  32. 32.
    Anderluh G, Razpotnik A, Podlesek Z et al. Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes:19F NMR studies. J Mol Biol 2005; 347:27–39.CrossRefPubMedGoogle Scholar
  33. 33.
    Meinardi E, Florin-Christensen M, Paratcha G et al. The molecular basis of the self/nonself selectivity of a coelenterate toxin. Biochem Biophys Res Commun 1995; 216:348–354.CrossRefPubMedGoogle Scholar
  34. 34.
    De Los Rios V, Mancheño JM, Lanio ME et al. Mechanism of the leakage induced on lipid model membranes by the hemolytic protein sticholysin II from the sea anemone Stichodactyla helianthus. Eur J Biochem 1998; 252:284–289.CrossRefGoogle Scholar
  35. 35.
    Caaveiro JM, Echabe I, Gutierrez-Aguirre I et al. Differential interaction of equinatoxin II with model membranes in response to lipid composition. Biophys J 2001; 80:1343–1353.CrossRefPubMedGoogle Scholar
  36. 36.
    Gutierrez-Aguirre I, Barlič A, Podlesek Z et al. Membrane insertion of the N-terminal alpha-helix of equinatoxin II, a sea anemone cytolytic toxin. Biochem J 2004; 384:421–428.CrossRefPubMedGoogle Scholar
  37. 37.
    Drechsler A, Potrich C, Sabo JK et al. Structure and activity of the N-terminal region of the eukaryotic cytolysin equinatoxin II. Biochemistry 2006; 45:1818–1828.CrossRefPubMedGoogle Scholar
  38. 38.
    Casallanovo F, de Oliveira FJ, deSouza FC et al. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II. Biopolymers 2006; 84:169–180.CrossRefPubMedGoogle Scholar
  39. 39.
    Poklar N, Fritz J, Maček P et al. Interaction of the pore-forming protein equinatoxin II with model lipid membranes: A calorimetric and spectroscopic study. Biochemistry 1999; 38:14999–15008.CrossRefPubMedGoogle Scholar
  40. 40.
    Anderluh G, Barlič A, Potrich C et al. Lysine 77 is a key residue in aggregation of equinatoxin II, a pore-forming toxin from sea anemone Actinia equina. J Membr Biol 2000; 173:47–55.CrossRefPubMedGoogle Scholar
  41. 41.
    Menestrina G, Cabiaux V, Tejuca M. Secondary structure of sea anemone cytolysins in soluble and membrane bound form by infrared spectroscopy. Biochem Biophys Res Commun 1999; 254:174–180.CrossRefPubMedGoogle Scholar
  42. 42.
    Alegre-Cebollada J, Martinez Del Pozo A, Gavilanes JG et al. Infrared spectroscopy study on the conformational changes leading to pore formation of the toxin sticholysin II. Biophys J 2007; 93:3191–3201.CrossRefPubMedGoogle Scholar
  43. 43.
    Kristan K, Viero G, Maček P et al. The equinatoxin N-terminus is transferred across planar lipid membranes and helps to stabilize the transmembrane pore. FEBS J 2007; 274:539–550.CrossRefPubMedGoogle Scholar
  44. 44.
    Iacovache I, Paumard P, Scheib H et al. A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J 2006; 25:457–466.CrossRefPubMedGoogle Scholar
  45. 45.
    Belmonte G, Pederzolli C, Maček P et al. Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J Membr Biol 1993; 131:11–22.CrossRefPubMedGoogle Scholar
  46. 46.
    Tejuca M, Dalla Serra M, Ferreras M et al. Mechanism of membrane permeabilization by sticholysin I, a cytolysin isolated from the venom of the sea anemone Stichodactyla helianthus. Biochemistry 1996; 35:14947–14957.CrossRefPubMedGoogle Scholar
  47. 47.
    Tejuca M, Dalla Serra M, Potrich C et al. Sizing the radius of the pore formed in erythrocytes and lipid vesicles by the toxin sticholysin I from the sea anemone Stichodactyla helianthus. J Membr Biol 2001; 183:125–35.CrossRefPubMedGoogle Scholar
  48. 48.
    Valcarcel CA, Dalla Serra M, Potrich C et al. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys J 2001; 80:2761–2774.CrossRefPubMedGoogle Scholar
  49. 49.
    Anderluh G, Dalla Serra M, Viero G et al. Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures. J Biol Chem 2003; 278:45216–45223.CrossRefPubMedGoogle Scholar
  50. 50.
    Yang L, Harroun TA, Weiss TM et al. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical J 2001; 81:1475–1485.CrossRefGoogle Scholar
  51. 51.
    Basañez G, Sharpe JC, Galanis J et al. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 2002; 277:49360–49365.CrossRefPubMedGoogle Scholar
  52. 52.
    Kuwana T, Mackey MR, Perkins G et al. Bid, Bax and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111:331–342.CrossRefPubMedGoogle Scholar
  53. 53.
    Yu L, Fernig DG, Smith JA et al. Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res 1993; 53:4627–4632.PubMedGoogle Scholar
  54. 54.
    Marty-Detraves C, Francis F, Baricault L et al. Inhibitory action of a new lectin from Xerocomus chrysenteron on cell-substrate adhesion. Mol Cell Biochem 2004; 258:49–55.CrossRefPubMedGoogle Scholar
  55. 55.
    Yu LG. The oncofetal Thomsen-Friedenreich carbohydrate antigen in cancer progression. Glycoconj J 2007; 24:411–420.CrossRefPubMedGoogle Scholar
  56. 56.
    Anderluh G, Lakey JH. Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 2008; 33:482–490.CrossRefPubMedGoogle Scholar
  57. 57.
    Tweten RK. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 2005; 73:6199–6209.CrossRefPubMedGoogle Scholar
  58. 58.
    Tejuca M, Anderluh G, Maček P et al. Antiparasite activity of sea-anemone cytolysins on Giardia duodenalis and specific targeting with anti-Giardia antibodies. Int J Parasitol 1999; 29:489–498.CrossRefPubMedGoogle Scholar
  59. 59.
    Potrich C, Tomazzolli R, Dalla Serra M et al. Cytotoxic activity of a tumor protease-activated pore-forming toxin. Bioconjug Chem 2005; 16:369–376.CrossRefPubMedGoogle Scholar
  60. 60.
    Jackson KE, Spielmann T, Hanssen E et al. Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochem J 2007; 403:167–175.CrossRefPubMedGoogle Scholar
  61. 61.
    Tafesse FG, Ternes P, Holthuis JC. The multigenic sphingomyelin synthase family. J Biol Chem 2006; 281:29421–29425.CrossRefPubMedGoogle Scholar
  62. 62.
    Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387:569–572.CrossRefPubMedGoogle Scholar
  63. 63.
    Bartke N, Hannun YA. Bioactive sphingolipids: metabolism and function. J Lipid Res 2009; 50:S91–S96.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovania
  2. 2.Department of BiologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations