Advertisement

Interfacial Interactions of Pore-Forming Colicins

  • Helen Ridleya
  • Christopher L. Johnson
  • Jeremy H. Lakey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 677)

Abstract

Colicins are water soluble toxins secreted by E. coli cells to kill other E. coli and related species. To do this they need to cross the outer membrane, periplasm and inner membrane. Pore forming colicins, as their name suggests form a voltage dependent pore in the inner membrane. This chapter deals with the interfaces, both lipid and protein, that the colicins experience as they make the short but complex journey that brings them to the point of pore formation. The succession of molecular interactions with lipid and protein receptors causes a series of conformational changes which allow these large >40 kDa proteins to outwit the normally tight defensive shield of the target cell. This is done by combining general physico-chemical interfacial interactions, such as the use of amphipathic helical peptides, with precisely targeted protein-protein interactions involving both rigid and natively disordered protein domains.

Keywords

Pore Formation Membrane Binding Yersinia Pestis Membrane Insertion Lytic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cascales E, Buchanan SK, Duche D et al. Colicin biology. Microbio Mol Biol Rev 2007; 71:158–229.CrossRefGoogle Scholar
  2. 2.
    Dawkins R. The selfish gene. Oxford: Oxford University Press; 1976.Google Scholar
  3. 3.
    Kageyama M, Kobayashi M, Sano Y et al. Construction and characterization of pyocin-colicin chimeric proteins. Bacterio 1996; 178:103–110.Google Scholar
  4. 4.
    Rakin A, Boolgakowa E, Heesemann J. Structural and functional organization of the Yersinia pestis bacteriocin pesticin gene cluster. Microbiol UK 1996; 142:3415–3424.CrossRefGoogle Scholar
  5. 5.
    Vollmer W, Pilsl H, Hantke K et al. Pesticin displays muramidase activity. Bacterio 1997; 179:1580–1583.Google Scholar
  6. 6.
    Lakey JH, Slatin SL. Pore-forming colicins and their relatives. In: Van Der Goot FG, ed. Pore-Forming Toxins. Heidelberg: Springer Verlag; 2001; 257:131–161.Google Scholar
  7. 7.
    James R, Kleanthous C, Moore GR. The biology of E-colicins—paradigms and paradoxes. Microbio UK 1996; 142:1569–1580.CrossRefGoogle Scholar
  8. 8.
    Zakharov SD, Cramer WA. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta-Biomembranes 2002; 1565:333–346.CrossRefGoogle Scholar
  9. 9.
    Riley MA. Molecular mechanisms of bacteriocin evolution. Ann Rev Gene 1998; 32:255–278.CrossRefGoogle Scholar
  10. 10.
    Baboolal TG, Conroy MJ, Gill K et al. Colicin N binds to the periphery of its receptor and translocator, outer membrane protein F. Structure 2008; 16:371–379.CrossRefPubMedGoogle Scholar
  11. 11.
    Evans LJA, Cooper A, Lakey JH. Direct measurement of the association of a protein with a family of membrane receptors. J Mol Bio 1996; 255:559–563.CrossRefGoogle Scholar
  12. 12.
    Arnold T, Zeth K, Linke D. Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J Biol Chem 2009; 284:6403–6413.CrossRefPubMedGoogle Scholar
  13. 13.
    Hilsenbeck JL, Park H, Chen G et al. Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 and nbsp; and Aring; resolution. Mol Microbio 2004; 51:711–720.CrossRefGoogle Scholar
  14. 14.
    Wiener M, Freymann D, Ghosh P et al. Crystal structure of colicin Ia. Nature 1997; 385:461–464.CrossRefPubMedGoogle Scholar
  15. 15.
    Vetter IR, Parker MW, Tucker AD et al. Crystal structure of a colicin N fragment suggests a model for toxicity. Structure 1998; 6:863–874.CrossRefPubMedGoogle Scholar
  16. 16.
    Elkins P, Bunker A, Cramer WA et al. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 1997; 5:443–458.CrossRefPubMedGoogle Scholar
  17. 17.
    Parker MW, Postma JP, Pattus F et al. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol 1992; 224:639–657.CrossRefPubMedGoogle Scholar
  18. 18.
    Parker MW, Tucker AD, Tsernoglou D et al. Insights into membrane insertion based on studies of colicins. Trends Biochem Sci 1990; 15:126–129.CrossRefPubMedGoogle Scholar
  19. 19.
    Parker MW, Pattus F, Tucker AD et al. Structure of the membrane-pore-forming fragment of colicin A. Nature 1989; 337:93–96.CrossRefPubMedGoogle Scholar
  20. 20.
    Muchmore SW, Sattler M, Liang H et al. X-ray and nmr structure of human bcl-x(l), an inhibitor of programmed cell-death. Nature 1996; 381:335–341.CrossRefPubMedGoogle Scholar
  21. 21.
    Choe S, Bennett MJ, Fujii G et al. The crystal structure of diphtheria toxin. Nature 1992; 357:216–222.CrossRefPubMedGoogle Scholar
  22. 22.
    Parker MW, Pattus F. Rendering a membrane-protein soluble in water—a common packing motif in bacterial protein toxins. Trends Biochem Sci 1993; 18:391–395.CrossRefPubMedGoogle Scholar
  23. 23.
    Duché D, Parker MW, Gonzaléz-Mañas JM et al. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. J Biol Chem 1994; 269:6332–6339.PubMedGoogle Scholar
  24. 24.
    Duche D, Baty D, Chartier M et al. Unfolding of colicin A during its translocation through the Escherichia coli envelope as demonstrated by disulfide bond engineering. J Bio Chem 1994; 269:24820–24825.Google Scholar
  25. 25.
    Benedetti H, Lloubes R, Lazdunski C et al. Colicin A unfolds during its translocation in Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J 1992; 11:441–447.PubMedGoogle Scholar
  26. 26.
    Evans LJA, Goble ML, Hales K et al. Different sensitivities to acid denaturation within a family of proteins; Implications for acid unfolding and membrane translocation. Biochemistry 1996; 35:13180–13185.CrossRefPubMedGoogle Scholar
  27. 27.
    Buchanan SK, Lukacik P, Grizot S et al. Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import. EMBO 2007; 26:2594–2604.CrossRefGoogle Scholar
  28. 28.
    Sharma O, Yamashita E, Zhalnina MV et al. Structure of the complex of the colicin E2 R-domain and its BtuB receptor—The outer membrane colicin translocon. J of Biol Chem 2007; 282:23163–23170.CrossRefGoogle Scholar
  29. 29.
    Kurisu G, Zakharov SD, Zhalnina MV et al. The structure of BtuB with bound colicin E3 R-domain implies a translocon. Nat Struct Biol 2003; 10:948–954.CrossRefPubMedGoogle Scholar
  30. 30.
    Vetter IR, Parker MW, Pattus F et al. Insights into membrane insertion based on studies of colicins. In: Parker MW, ed. Protein Toxin Structure. Austin TX: R. G. Landes Company; 1996:5–24.Google Scholar
  31. 31.
    Koronakis V, Sharff A, Koronakis E et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000; 405:914–919.CrossRefPubMedGoogle Scholar
  32. 32.
    Evans LJA, Labeit S, Cooper A et al. The central domain of colicin N possesses the receptor recognition site but not the binding affinity of the whole toxin. Biochemistry 1996; 35:15143–15148.CrossRefPubMedGoogle Scholar
  33. 33.
    Housden NG, Loftus SR, Moore GR et al. Cell entry mechanism of enzymatic bacterial colicins: Porin recruitment and the thermodynamics of receptor binding. Proc Natn Acad Sci USA 2005; 102:13849–13854.CrossRefGoogle Scholar
  34. 34.
    Zakharov SD, Eroukova VY, Rokitskaya TI et al. Colicin occlusion of OmpF and TolC channels: Outer membrane translocons for colicin import. Biophy J 2004; 87:3901–3911.CrossRefGoogle Scholar
  35. 35.
    Stora T, Lakey JH, Vogel H. Ion-channel gating in transmembrane receptor proteins: Functional activity in tethered lipid membranes. Angew Chem Int Ed 1999; 38:389–392.CrossRefGoogle Scholar
  36. 36.
    Anderluh G, Hong Q, Boetzel R et al. Concerted folding and binding of a flexible colicin domain to its periplasmic receptor TolA. J Biol Chem 2003; 278:21860–21868.CrossRefPubMedGoogle Scholar
  37. 37.
    Hecht O, Ridley H, Boetzel R et al. Self-recognition by an intrinsically disordered protein. FEBS Lett 2008; 582:2673–2677.CrossRefPubMedGoogle Scholar
  38. 38.
    Romero P, Obradovic Z, Dunker AK. Natively disordered proteins: functions and predictions. Appl Bioinformatics 2004; 3:105–113.CrossRefPubMedGoogle Scholar
  39. 39.
    Bainbridge G, Armstrong GA, Dover LG et al. Displacement of OmpF loop 3 is not required for the membrane translocation of colicins N and A in vivo. FEBS Lett 1998; 432:117–122.CrossRefPubMedGoogle Scholar
  40. 40.
    Levengood SK, Beyer WJ, Webster RE. TolA: a membrane protein involved in colicin uptake contains an extended helical region. Proc Natl Acad Sci USA 1991; 88:5939–5943.CrossRefPubMedGoogle Scholar
  41. 41.
    Schendel SL, Click EM, Webster RE et al. The TolA protein interacts with colicin E1 differently than with other group A colicins. J Bacteriol 1997; 179:3683–3690.PubMedGoogle Scholar
  42. 42.
    Derouiche R, Gavioli M, Benedetti H et al. TolA central domain interacts with Escherichia coli porins. EMBO J 1996; 15:6408–6415.PubMedGoogle Scholar
  43. 43.
    Duché D, Letellier L, Geli V et al. Quantification of group-A colicin import sites. J Bacteriol 1995; 177:4935–4939.PubMedGoogle Scholar
  44. 44.
    Elkouhen R, Pages JM. Dynamic aspects of colicin N translocation through the Escherichia coli outer-membrane. J Bacteriol 1996; 178:5316–5319.Google Scholar
  45. 45.
    El-Kouhen R, Pages JM. Dynamic aspects of colicin N translocation through the Escherichia coli outer-membrane. Jof Bacteriol 1996; 178:5316–5319.Google Scholar
  46. 46.
    Nardi A, Slatin SL, Baty D et al. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro. J Mol Biol 2001; 307:1293–1303.CrossRefPubMedGoogle Scholar
  47. 47.
    Baty D, Lakey J, Pattus F et al. A 136-amino-acid-residue COOH-terminal fragment of colicin A is endowed with ionophoric activity. Eur J Biochem 1990; 189:409–413.CrossRefPubMedGoogle Scholar
  48. 48.
    Lakey J, Baty D, González-Mañas JM et al. Site-directed fluorescence spectroscopy as a tool to study the membrane insertion of colicin A. In: James RP, F and Lazdunski C, ed. Plasmid encoded toxins. Heidelberg: Springer Verlag; 1992:127–138.Google Scholar
  49. 49.
    Lakey JH, Baty D, Pattus F. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants. The membrane insertion of colicin A. J Mol Biol 1991; 218:639–653.CrossRefPubMedGoogle Scholar
  50. 50.
    Lakey JH, Duché D, González-Mañas J-M et al. Fluorescence energy transfer distance measurements the hydrophobic helical hairpin of Colicin A in the membrane bound state. J Mol Biol 1993; 230:1055–1067.CrossRefPubMedGoogle Scholar
  51. 51.
    Lakey JH, Massotte D, Heitz F et al. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. Eur J Biochem 1991; 196:599–607.CrossRefPubMedGoogle Scholar
  52. 52.
    Fridd SL, Lakey JH. Surface aspartate residues are essential for the stability of colicin A P-domain: A mechanism for the formation of an acidic molten-globule. Biochemistry 2002; 41:1579–1586.CrossRefPubMedGoogle Scholar
  53. 53.
    Dover LG, Evans LJ, Fridd SL et al. Colicin pore-forming domains bind to Escherichia coli trimeric porins. Biochemistry 2000; 39:8632–8637.CrossRefPubMedGoogle Scholar
  54. 54.
    Padmavathi PVL, Steinhoff HJ. Conformation of the closed channel state of colicin a in proteoliposomes: An umbrella model. J Mol Biol 2008; 378:204–214.CrossRefPubMedGoogle Scholar
  55. 55.
    Tory MC, Merrill AR. Adventures in membrane protein topology—A study of the membrane-bound state of colicin E1. J Biol Chem 1999; 274:24539–24549.CrossRefPubMedGoogle Scholar
  56. 56.
    Slatin SL, Qiu XQ, Jakes KS et al. Identification of a translocated protein segment in a voltage-dependent channel. Nature 1994:158–161.Google Scholar
  57. 57.
    Yau WM, Wimley WC, Gawrisch K et al. The preference of tryptophan for membrane interfaces. Biochemistry 1998; 37:14713–14718.CrossRefPubMedGoogle Scholar
  58. 58.
    González-Mañas JM, Lakey JH, Pattus F. Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A. Biochemistry 1992; 31:7294–7300.CrossRefPubMedGoogle Scholar
  59. 59.
    González-Mañas JM, Lakey JH, Pattus F. Interaction of the colicin-A pore-forming domain with negatively charged phospholipids. Eur J Biochem 1993; 211:625–633.CrossRefPubMedGoogle Scholar
  60. 60.
    van der Goot FG, González-Mañas JM, Lakey JH et al. A ‘molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 1991; 354:408–410.CrossRefPubMedGoogle Scholar
  61. 61.
    Palmer LR, Merrill AR. Mapping the membrane topology of the closed state of the colicin e1 channel. J Biol Chem 1994; 269:4187–4193.PubMedGoogle Scholar
  62. 62.
    Tory MC, Merrill AR. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide. Biochim Biophy Acta-Biomembranes 2002; 1564:435–448.CrossRefGoogle Scholar
  63. 63.
    Ho D, Merrill AR. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel. Biochemistry 2009; 48:1369–1380.CrossRefPubMedGoogle Scholar
  64. 64.
    Slatin SL, Duche D, Kienker PK et al. Gating movements of colicin A and colicin Ia are different. J Membr Biol 2004; 202:73–83.CrossRefPubMedGoogle Scholar
  65. 65.
    Anderluh G, Lakey JH. Lipid interactions of alpha-helical protein toxins. In: Tamm LK, ed. Protein-Lipid interactions. From Membrane Domains to Cellular Networks. Weinheim: Wiley-VCH; 2005:141–162.Google Scholar
  66. 66.
    Visudtiphole V, Chalton DA, Hong Q et al. Determining OMP topology by computation, surface plasmon resonance and cysteine labelling: The test case of OMPG. Biochemical And Biophysical Research Communications 2006; 351:113–117.CrossRefPubMedGoogle Scholar
  67. 67.
    Cornette JL, Cease KB, Margalit H et al. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J Mol Biol 1987; 195:659–685.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Helen Ridleya
    • 1
  • Christopher L. Johnson
    • 1
  • Jeremy H. Lakey
    • 1
  1. 1.Institute for Cell and Molecular BiosciencesUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations