Membrane Association and Pore Formation by Alpha-Helical Peptides

  • Burkhard Bechinger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 677)


Membrane-active peptides exhibit antimicrobial, channel-forming and transport activities and have therefore early on been interesting targets for biophysical investigations. When the peptide-lipid interactions are studied a dynamic view emerges in which the peptides change conformation upon membrane insertion, can adopt a variety of topologies and change the macroscopic phase properties of the membrane locally or globally. Interestingly several proteins have been identified that also interact with the membrane in a dynamic fashion and where the lessons learned from peptides may add to our understanding of the ways these proteins function.


Lipid Bilayer Antimicrobial Peptide Pore Formation Membrane Association Membrane Insertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tusnady GE, Dosztanyi Z, Simon I. Transmembrane proteins in the protein data bank: identification and classification. Bioinformatics 2004; 20:2964–2972.PubMedCrossRefGoogle Scholar
  2. 2.
    Raman P, Cherezov V, Caffrey M. The membrane protein data bank. Cell Mol Life Sci 2006; 63:36–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Bechinger B. Structure and functions of channel-forming polypeptides: magainins, cecropins, melittin and alamethicin. J Membrane Biol 1997; 156:197–211.CrossRefGoogle Scholar
  4. 4.
    Lear JD, Wasserman ZR, DeGrado WF. Synthetic amphiphilic peptide models for protein ion channels. Science 1988; 240:1177–1181.PubMedCrossRefGoogle Scholar
  5. 5.
    Bechinger B. Towards membrane protein design: pH dependent topology of histidine-containing polypeptides. J Mol Biol 1996; 263:768–775.PubMedCrossRefGoogle Scholar
  6. 6.
    Killian JA, Salemink I, de Planque MRR et al. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane a-helical peptides: Importance of hydrophobic mismatch and propose role of tryptophans. Biochemistry 1996; 35:1037–1045.PubMedCrossRefGoogle Scholar
  7. 7.
    Hong M. Oligomeric structure, dynamics and orientation of membrane proteins from solid-state NMR. Structure 2006; 14:1731–1740.PubMedCrossRefGoogle Scholar
  8. 8.
    Salnikov ES, Friedrich H, Li X et al. Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 2009; 96:86–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Leitgeb B, Szekeres A, Manczinger L et al. The history of alamethicin: a review of the most extensively studied peptaibol. Chem Biodivers 2007; 4:1027–1051.PubMedCrossRefGoogle Scholar
  10. 10.
    Sansom MS. Alamethicin and related peptaibols—model ion channels. Eur Biophys J 1993; 22:105–124.PubMedCrossRefGoogle Scholar
  11. 11.
    Thogersen L, Schiott B, Vosegaard T et al. Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study. Biophys J 2008; 95:4337–4347.PubMedCrossRefGoogle Scholar
  12. 12.
    Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 2005; 346:967–989.PubMedCrossRefGoogle Scholar
  13. 13.
    Oxenoid K, Rice AJ, Chou JJ. Comparing the structure and dynamics of phospholamban pentamer in its unphosphorylated and pseudo-phosphorylated states. Protein Sci 2007; 16:1977–1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Traaseth NJ, Verardi R, Torgersen KD et al. Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci USA 2007; 104:14676–14681.PubMedCrossRefGoogle Scholar
  15. 15.
    Long SB, Tao X, Campbell EB et al. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 2007; 450:376–382.PubMedCrossRefGoogle Scholar
  16. 16.
    Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 2008; 451:591–595.PubMedCrossRefGoogle Scholar
  17. 17.
    Stouffer AL, Acharya R, Salom D et al. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 2008; 451:596–599.PubMedCrossRefGoogle Scholar
  18. 18.
    Yee A, Szymczyna B, O’Neil JD. Backbone dynamics of detergent-solubilized alamethicin from amide hydrogen exchange measurements. Biochemistry 1999; 38:6489–6498.PubMedCrossRefGoogle Scholar
  19. 19.
    Jacob J, Duclohier H, Cafiso DS. The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide. Biophys J 1999; 76:1367–1376.PubMedCrossRefGoogle Scholar
  20. 20.
    Franklin JC, Ellena JF, Jayasinghe S et al. Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. Biochemistry 1994; 33:4036–4045.PubMedCrossRefGoogle Scholar
  21. 21.
    North CL, Barranger-Mathys M, Cafiso DS. Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15N NMR. Biophys J 1995; 69:2392–2397.PubMedCrossRefGoogle Scholar
  22. 22.
    Bechinger B, Skladnev DA, Ogrel A et al 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes. Biochemistry 2001; 40:9428–9437.PubMedCrossRefGoogle Scholar
  23. 23.
    Bak M, Bywater RP, Hohwy M et al. Conformation of alamethicin in oriented phospholipid bilayers determined by N-15 solid-state nuclear magnetic resonance. Biophys J 2001; 81:1684–1698.PubMedCrossRefGoogle Scholar
  24. 24.
    Sansom MSP. The biophysics of peptide models of ion channels. Prog Biophys Molec Biol 1991; 55:139–235.CrossRefGoogle Scholar
  25. 25.
    Huang HW. Action of antimicrobial peptides: Two-state model. Biochemistry 2000; 39:8347–8352.PubMedCrossRefGoogle Scholar
  26. 26.
    Okazaki T, Sakoh M, Nagaoka Y et al. Ion channels of alamethicin dimer N-terminally linked by disulfide bond. Biophys J 2003; 85:267–273.PubMedCrossRefGoogle Scholar
  27. 27.
    Sudheendra US, Bechinger B. Topological equilibria of ion channel peptides in oriented lipid bilayers revealed by 15N solid-state NMR spectroscopy. Biochemistry 2005; 44:12120–12127.PubMedCrossRefGoogle Scholar
  28. 28.
    Salnikov ES, De Zotti M, Formaggio F et al. Alamethicin topology in phospholipid membranes by oriented solid-state NMR and EPR spectroscopies: A comparison. J Phys Chem B 2009; 113:3034–3042.PubMedCrossRefGoogle Scholar
  29. 29.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415:389–395.PubMedCrossRefGoogle Scholar
  30. 30.
    Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Intern Med 2003; 254:197–215.PubMedCrossRefGoogle Scholar
  31. 31.
    Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by solid-state NMR spectroscopy. Biochim Biophys Acta 1999; 1462:157–183.PubMedCrossRefGoogle Scholar
  32. 32.
    Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002; 66:236–248.PubMedCrossRefGoogle Scholar
  33. 33.
    Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3:238–250.PubMedCrossRefGoogle Scholar
  34. 34.
    Matsuzaki K, Murase O, Tokuda H et al. Orientational and Aggregational States of Magainin 2 in Phospholipid Bilayers. Biochemistry 1994; 33:3342–3349.PubMedCrossRefGoogle Scholar
  35. 35.
    Salnikov ES, Mason AJ, Bechinger B. Membrane order perturbation in the presence of antimicrobial peptides by 2H solid-state NMR spectroscopy. Biochimie 2009; 91:734–743.PubMedCrossRefGoogle Scholar
  36. 36.
    Ludtke S, He K, Huang H. Membrane thinning caused by magainin 2. Biochemistry 1995; 34:16764–1679.PubMedCrossRefGoogle Scholar
  37. 37.
    Gregory SM, Cavenaugh A, Journigan V et al. A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J 2008; 94:1667–1680.PubMedCrossRefGoogle Scholar
  38. 38.
    Bechinger B. Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Current Opinion in Colloid and Interface Science, Surfactants (in press) 2009.Google Scholar
  39. 39.
    Mozsolits H, Wirth HJ, Werkmeister J et al. Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim Biophys Acta 2001; 1512:64–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Papo N, Shai Y. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 2003; 42:458–466.PubMedCrossRefGoogle Scholar
  41. 41.
    Wieprecht T, Beyermann M, Seelig J. Binding of antibacterial magainin peptides to electrically neutral membranes: Thermodynamics and structure. Biochemistry 1999; 38:10377–10378.PubMedCrossRefGoogle Scholar
  42. 42.
    Wenk M, Seelig J. Magainin 2 amide interaction with lipid membranes: Calorimetric detection of peptide binding and pore formation. Biochemistry 1998; 37:3909–3916.PubMedCrossRefGoogle Scholar
  43. 43.
    Vogt TCB, Bechinger B. The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers: The effects of charges and pH. J Biol Chem 1999; 274:29115–29121.PubMedCrossRefGoogle Scholar
  44. 44.
    Wieprecht T, Apostolov O, Beyermann M et al. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 2000; 39:442–452.PubMedCrossRefGoogle Scholar
  45. 45.
    Dathe M, Nikolenko H, Meyer J et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 2001; 501:146–150.PubMedCrossRefGoogle Scholar
  46. 46.
    Mason AJ, Martinez A, Glaubitz C et al. The antibiotic and DNA-transfecting peptide LAH4 selectively associates with and disorders, anionic lipids in mixed membranes. FASEB J 2006; 20:320–322.PubMedGoogle Scholar
  47. 47.
    Chen FY, Lee MT, Huang HW. Evidence for membrane thinning effect as the mechanism for Peptide-induced pore formation. Biophys J 2003; 84:3751–3758.PubMedCrossRefGoogle Scholar
  48. 48.
    Mecke A, Lee DK, Ramamoorthy A et al. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J 2005; 89:4043–4050.PubMedCrossRefGoogle Scholar
  49. 49.
    Bechinger B, Lohner K. Detergent-like action of linear cationic membrane-active antibiotic peptides. Biochim Biophys Acta 2006; 1758:1529–1539.PubMedCrossRefGoogle Scholar
  50. 50.
    Dvinskikh S, Durr U, Yamamoto K et al. A high-resolution solid-state NMR approach for the structural studies of bicelles. J Am Chem Soc 2006; 128:6326–6327.PubMedCrossRefGoogle Scholar
  51. 51.
    Mason AJ, Bechinger B. Zwitterionic lipids and sterols modulate antimicrobial peptide-membrane interactions. Biophys J 2007; 93:4289–4299.PubMedCrossRefGoogle Scholar
  52. 52.
    Dufourc EJ, Smith IC, Dufourcq J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry 1986; 25:6448–6455.PubMedCrossRefGoogle Scholar
  53. 53.
    Hallock KJ, Lee DK, Omnaas J et al. Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 2002; 83:1004–1013.PubMedCrossRefGoogle Scholar
  54. 54.
    Bechinger B. Detergent-like properties of magainin antibiotic peptides: A 31P solid-state NMR study. Biochim Biophys Acta 2005; 1712:101–108.PubMedCrossRefGoogle Scholar
  55. 55.
    Batenburg AM, van Esch JH, de Kruijff B. Melittin-induced changes of the macroscopic structure of phosphatidylethanolamines. Biochemistry 1988; 27:2324–2331.PubMedCrossRefGoogle Scholar
  56. 56.
    Zakharov SD, Lindeberg M, Griko Y et al. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Proc Natl Acad Sci USA 1998; 95:4282–4287.PubMedCrossRefGoogle Scholar
  57. 57.
    Stroud RM, Reiling K, Wiener M et al. Ion-channel-forming colicins. Curr Opin Struct Biol 1998; 8:525–533.PubMedCrossRefGoogle Scholar
  58. 58.
    Lakey JH, Slatin SL. Pore-forming colicins and their relatives. Curr Top Microbiol Immunol 2001; 257:131–161.PubMedGoogle Scholar
  59. 59.
    Zakharov SD, Cramer WA. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta 2002; 1565:333–346.PubMedCrossRefGoogle Scholar
  60. 60.
    Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 2004; 1644:83–94.PubMedCrossRefGoogle Scholar
  61. 61.
    Pattus F, Massotte D, Wilmsen HU et al. Colicins: prokaryotic killer-pores. Experientia 1990; 46:180–192.PubMedGoogle Scholar
  62. 62.
    Sathish HA, Cusan M, Aisenbrey C et al. Guanidine hydrochloride induced equilibrium unfolding studies of colicin B and its channel-forming fragment. Biochemistry 2002; 41:5340–5347.PubMedCrossRefGoogle Scholar
  63. 63.
    Aisenbrey C, Sudheendra US, Ridley H et al. Helix orientations in membrane-associated Bcl-XL determined by 15N solid-state NMR spectroscopy. Eur Biophys J 2007; 36:451–460.PubMedCrossRefGoogle Scholar
  64. 64.
    Losonczi JA, Olejniczak ET, Betz SF et al. NMR studies of the anti-apoptotic protein Bcl-x(L) in micelles. Biochemistry 2000; 39:11024–11033.PubMedCrossRefGoogle Scholar
  65. 65.
    Kienker PK, Qiu X, Slatin SL et al. Transmembrane insertion of the colicin Ia hydrophobic hairpin. J Membrane Biol 1997; 157:27–37.CrossRefGoogle Scholar
  66. 66.
    Aisenbrey C, Cusan M, Lambotte S et al. Specific isotope labeling of colicin E1 and B channel domains for membrane topological analysis by oriented solid-state NMR spectroscopy. Chem Bio Chem 2008; 9:944–951.PubMedGoogle Scholar
  67. 67.
    Malenbaum SE, Collier RJ, London E. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry 1998; 37:17915–17922.PubMedCrossRefGoogle Scholar
  68. 68.
    Chenal A, Prongidi-Fix L, Perier A et al. Deciphering membrane insertion of the diphtheria toxin T domain by specular neutron reflectometry and solid-state NMR spectroscopy. J Mol Biol 2009; 391:872–883PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Burkhard Bechinger
    • 1
  1. 1.Institut de chimieCNRS—Université de StrasbourgStrasbourgFrance

Personalised recommendations