Metalloid Transport by Aquaglyceroporins: Consequences in the Treatment of Human Diseases

  • Rita Mukhopadhyay
  • Eric Beitz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 679)


Metalloids can severely harm human physiology in a toxicological sense if taken up from the environment in acute high doses or chronically. However, arsenic or antimony containing drugs are still being used as treatment and are often the sole regime for certain forms of cancer, mainly types of leukemia and diseases caused by parasites, such as sleeping sickness or leishmaniasis. In this chapter, we give an outline of the positive effects of arsenicals and antimonials against such diseases, we summarize data on uptake pathways through human and parasite aquaglyceroporins and we discuss the progress and options in the development of therapeutic aquaporin and aquaglyceroporin inhibitor compounds.


Visceral Leishmaniasis Cutaneous Leishmaniasis Arsenic Trioxide AQP9 Expression Gemtuzumab Ozogamicin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klaassen CD. Heavy Metals and Heavy Metal Antagonists. New York: McGraw-Hill; 1996.Google Scholar
  2. 2.
    Kwong YL, Todd D. Delicious poison: arsenic trioxide for the treatment of leukemia. Blood 1997; 89:3487–3488.PubMedGoogle Scholar
  3. 3.
    Aronson SM: Arsenic and old myths. R I Med 1994; 77:233–234.PubMedGoogle Scholar
  4. 4.
    Staff NRC: Arsenic in drinking water: National Academy Press; 1999.Google Scholar
  5. 5.
    Soignet SL, Maslak P, Wang ZG et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998; 339:1341–1348.PubMedGoogle Scholar
  6. 6.
    Bhattacharjee H, Ghosh M, Mukhopadhyay R et al. Arsenic transporters from E. coli to humans. In: Broome-Smith JK, Baumberg S, Sterling CJ, Ward FB, eds. Transport of Molecules Across Microbial Membranes. Leeds: Society for General Micriobiology, 1999; 58:58–79.Google Scholar
  7. 7.
    Wysocki R, Bobrowicz P, Ulaszewski S. The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 1997; 272:30061–30066.PubMedGoogle Scholar
  8. 8.
    Ghosh M, Shen J, Rosen BP. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1999; 96:5001–5006.PubMedGoogle Scholar
  9. 9.
    Dey S, Ouellette M, Lightbody J et al. An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA 1996; 93:2192–2197.PubMedGoogle Scholar
  10. 10.
    Legare D, Richard D, Mukhopadhyay R et al. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem 2001; 276:26301–26307.PubMedGoogle Scholar
  11. 11.
    Broeks A, Gerrard B, Allikmets R et al. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. EMBO J 1996; 15:6132–6143.PubMedGoogle Scholar
  12. 12.
    Kimura A, Ishida Y, Wada T et al. MRP-1 expression levels determine strain-specific susceptibility to sodium arsenic-induced renal injury between C57BL/6 and BALB/c mice. Toxicol Appl Pharmacol 2005; 203:53–61.PubMedGoogle Scholar
  13. 13.
    Zaman GJ, Lankelma J, van Tellingen O et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Nat Acad Sci USA 1995; 92:7690–7694.PubMedGoogle Scholar
  14. 14.
    Kojima C, Qu W, Waalkes MP et al. Chronic exposure to methylated arsenicals stimulates arsenic excretion pathways and induces arsenic tolerance in rat liver cells. Toxicol Sci 2006; 91:70–81.PubMedGoogle Scholar
  15. 15.
    Tallman MS. Arsenic trioxide: its role in acute promyelocytic leukemia and potential in other hematologic malignancies. Blood Rev 2001; 15:133–142.PubMedGoogle Scholar
  16. 16.
    Tallman MS, Nabhan C, Feusner JH et al. Acute promyelocytic leukemia: evolving therapeutic strategies. Blood 2002; 99:759–767.PubMedGoogle Scholar
  17. 17.
    Davison K, Mann KK, Miller WH Jr. Arsenic trioxide: mechanisms of action. Semin Hematol 2002; 39:3–7.PubMedGoogle Scholar
  18. 18.
    Shen Y, Shen ZX, Yan H et al. Studies on the clinical efficacy and pharmacokinetics of low-dose arsenic trioxide in the treatment of relapsed acute promyelocytic leukemia: a comparison with conventional dosage. Leukemia 2001; 15:735–741.PubMedGoogle Scholar
  19. 19.
    Perkins C, Kim CN, Fang G et al. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood 2000; 95:1014–1022.PubMedGoogle Scholar
  20. 20.
    O’Dwyer ME, La Rosee P, Nimmanapalli R et al. Recent advances in Philadelphia chromosome-positive malignancies: the potential role of arsenic trioxide. Semin Hematol 2002; 39:18–21.PubMedGoogle Scholar
  21. 21.
    Chen Z, Chen GQ, Shen ZX et al. Expanding the use of arsenic trioxide: leukemias and beyond. Semin Hematol 2002; 39:22–26.PubMedGoogle Scholar
  22. 22.
    Dilda PJ, Hogg PJ. Arsenical-based cancer drugs. Cancer Treat Rev 2007; 33:542–564.PubMedGoogle Scholar
  23. 23.
    Verstovsek S, Giles F, Quintas-Cardama A et al. Arsenic derivatives in hematologic malignancies: a role beyond acute promyelocytic leukemia? Hematol Oncol 2006; 24:181–188.PubMedGoogle Scholar
  24. 24.
    Simeonova PP, Luster MI. Arsenic carcinogenicity: relevance of c-Src activation. Mol Cell Biochem 2002; 234–235:277–282.PubMedGoogle Scholar
  25. 25.
    Arsenic and Arsenic Compounds: IARC; 1987.Google Scholar
  26. 26.
    Verma A, Mohindru M, Deb DK et al. Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to arsenic trioxide. J Biol Chem 2002; 277:44988–44995.PubMedGoogle Scholar
  27. 27.
    Arima H, Yamamoto N, Sobue K et al. Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem 2003; 278:44525–44534.PubMedGoogle Scholar
  28. 28.
    Umenishi F, Schrier RW. Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J Biol Chem 2003; 278:15765–15770.PubMedGoogle Scholar
  29. 29.
    Hara-Chikuma M, Verkman AS. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med 2008; 86:221–231.PubMedGoogle Scholar
  30. 30.
    Thorsen M, Di Y, Tangemo C et al. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 2006; 17:4400–4410.PubMedGoogle Scholar
  31. 31.
    Bhattacharjee H, Carbrey J, Rosen BP et al. Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem Biophys Res Comm 2004; 322:836–841.PubMedGoogle Scholar
  32. 32.
    Leung J, Pang A, Yuen WH et al. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood 2007; 109:740–746.PubMedGoogle Scholar
  33. 33.
    Aribi A, Kantarjian HM, Estey EH et al. Combination therapy with arsenic trioxide, all-trans retinoic acid and gemtuzumab ozogamicin in recurrent acute promyelocytic leukemia. Cancer 2007; 109:1355–1359.PubMedGoogle Scholar
  34. 34.
    Zhou GB, Zhang J, Wang ZY et al. Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Phil Trans R Soc Lond 2007; 362:959–971.Google Scholar
  35. 35.
    Lee TC, Ho IC, Lu WJ et al. Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line. J Biol Chem 2006; 281:18401–18407.PubMedGoogle Scholar
  36. 36.
    Bouteille B, Oukem O, Bisser S et al. Treatment perspectives for human African trypanosomiasis. Fund Clin Pharmacol 2003; 17:171–181.Google Scholar
  37. 37.
    Fairlamb AH, Henderson GB, Cerami A. Trypanothione is the primary target for arsenical drugs against African trypanosomes. Proc Nat Acad Sci USA 1989; 86:2607–2611.PubMedGoogle Scholar
  38. 38.
    Wang CC. Molecular mechanisms and therapeutic approaches to the treatment of African trypanosomiasis. Ann Rev Pharmacol Tox 1995; 35:93–127.Google Scholar
  39. 39.
    de Koning HP. Transporters in African trypanosomes: role in drug action and resistance. Int J Parasitol 2001; 31:512–522.PubMedGoogle Scholar
  40. 40.
    Uzcategui NL, Szallies A, Pavlovic-Djuranovic S et al. Cloning, heterologous expression and characterization of three aquaglyceroporins from Trypanosoma brucei. J Biol Chem 2004; 279:42669–42676.PubMedGoogle Scholar
  41. 41.
    Choi CM, Lerner EA. Leishmaniasis: recognition and management with a focus on the immunocompromised patient. Am J Clin Dermatol 2002; 3:91–105.PubMedGoogle Scholar
  42. 42.
    Silva ES, Pacheco RS, Gontijo CM et al. Visceral leishmaniasis caused by Leishmania (Viannia) braziliensis in a patient infected with human immunodeficiency virus. Rev Inst Med Trop Sao Paulo 2002; 44:145–149.PubMedGoogle Scholar
  43. 43.
    Faraut-Gambarelli F, Piarroux R, Deniau M et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother 1997; 41:827–830.PubMedGoogle Scholar
  44. 44.
    Jackson JE, Tally JD, Ellis WY et al. Quantitative in vitro drug potency and drug susceptibility evaluation of Leishmania ssp. from patients unresponsive to pentavalent antimony therapy. Am J Trop Med Hyg 1990; 43:464–480.PubMedGoogle Scholar
  45. 45.
    Sundar S, More DK, Singh MK et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 2000; 31:1104–1107.PubMedGoogle Scholar
  46. 46.
    Ouellette M, Borst P. Drug resistance and P-glycoprotein gene amplification in the protozoan parasite. Leishmania. Res Microbiol 1991; 142:737–746.Google Scholar
  47. 47.
    Goodwin LG. Pentostam (sodium stibogluconate); a 50-year personal reminiscence. Trans R Soc Trop Med Hyg 1995; 89:339–341.PubMedGoogle Scholar
  48. 48.
    Lugo de Yarbuh A, Anez N, Petit de Pena Y et al. Antimony determination in tissues and serum of hamsters infected with Leishmania garnhami and treated with meglumine antimoniate. Ann Trop Med Parasitol 1994; 88:37–41.PubMedGoogle Scholar
  49. 49.
    Mottram JC, Coombs GH. Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol 1985; 59:151–160.PubMedGoogle Scholar
  50. 50.
    Roberts WL, Berman JD, Rainey PM. In vitro antileishmanial properties of tri-and pentavalent antimonial preparations. Antimicrob Agents Chemother 1995; 39:1234–1239.PubMedGoogle Scholar
  51. 51.
    Sereno D, Lemesre JL. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrob Agents Chemother 1997; 41:972–976.PubMedGoogle Scholar
  52. 52.
    Sereno D, Cavaleyra M, Zemzoumi K et al. Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother 1998; 42:3097–3102.PubMedGoogle Scholar
  53. 53.
    Gourbal B, Sonuc N, Bhattacharjee H et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 2004; 279:31010–31017.PubMedGoogle Scholar
  54. 54.
    Beitz E. Aquaporins from pathogenic protozoan parasites: structure, function and potential for chemotherapy. Biol Cell 2005; 97:373–383.PubMedGoogle Scholar
  55. 55.
    Figarella K, Uzcategui NL, Zhou Y et al. Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol 2007; 65:1006–1017.PubMedGoogle Scholar
  56. 56.
    Marquis N, Gourbal B, Rosen BP et al. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 2005; 57:1690–1699.PubMedGoogle Scholar
  57. 57.
    Decuypere S, Rijal S, Yardley V et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother 2005; 49:4616–4621.PubMedGoogle Scholar
  58. 58.
    Hansen M, Kun JF, Schultz JE et al. A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites. J Biol Chem 2002; 277:4874–4882.PubMedGoogle Scholar
  59. 59.
    Beitz E, Pavlovic-Djuranovic S, Yasui M et al. Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis. Proc Nat Acad Sci USA 2004; 101:1153–1158.PubMedGoogle Scholar
  60. 60.
    Newby ZE, O’Connell J, 3rd, Robles-Colmenares Y et al. Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol 2008; 15:619–625.PubMedGoogle Scholar
  61. 61.
    Uzcategui NL, Zhou Y, Figarella K et al. Alteration in glycerol and metalloid permeability by a single mutation in the extracellular C-loop of Leishmania major aquaglyceroporin LmAQP1. Mol Microbiol 2008; 70:1477–1486.PubMedGoogle Scholar
  62. 62.
    Tripathi RD, Srivastava S, Mishra S et al. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 2007; 25:158–165.PubMedGoogle Scholar
  63. 63.
    Bienert GP, Thorsen M, Schussler MD et al. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 2008; 6:26.PubMedGoogle Scholar
  64. 64.
    Isayenkov SV, Maathuis FJ. The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 2008; 582:1625–1628.PubMedGoogle Scholar
  65. 65.
    Ma JF, Yamaji N, Mitani N et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Nat Acad Sci USA 2008; 105:9931–9935.PubMedGoogle Scholar
  66. 66.
    Takano J, Wada M, Ludewig U et al. The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 2006; 18:1498–1509.PubMedGoogle Scholar
  67. 67.
    Ma JF, Tamai K, Yamaji N et al. A silicon transporter in rice. Nature 2006; 440:688–691.PubMedGoogle Scholar
  68. 68.
    Zhou Y, Messier N, Ouellette M et al. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem 2004; 279:37445–37451.PubMedGoogle Scholar
  69. 69.
    Denton H, McGregor JC, Coombs GH. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J 2004; 381:405–412.PubMedGoogle Scholar
  70. 70.
    Beitz E, Schultz JE. The mammalian aquaporin water channel family: A promising new drug target. Curr Med Chem 1999; 6:457–467.PubMedGoogle Scholar
  71. 71.
    Oshio K, Binder DK, Bollen A et al. Aquaporin-1 expression in human glial tumors suggests a potential novel therapeutic target for tumor-associated edema. Acta Neurochir Suppl 2003; 86:499–502.PubMedGoogle Scholar
  72. 72.
    Frühbeck G, Catalán V, Gómez-Ambrosi J et al. Aquaporin-7 and glycerol permeability as novel obesity drug-target pathways. Trends Pharmacol Sci 2006; 27:345–347.PubMedGoogle Scholar
  73. 73.
    Jeyaseelan K, Sepramaniam S, Armugam A et al. Aquaporins: a promising target for drug development. Expert Opin Ther Targets 2006; 10:889–909.PubMedGoogle Scholar
  74. 74.
    Papadopoulos MC, Verkman AS. Potential utility of aquaporin modulators for therapy of brain disorders. Prog Brain Res 2008; 170:589–601.PubMedGoogle Scholar
  75. 75.
    Schrier RW. The sea within us: disorders of body water homeostasis. Curr Opin Investig Drugs 2007; 8:304–311.PubMedGoogle Scholar
  76. 76.
    Verkman AS. Role of aquaporin water channels in eye function. Exp Eye Res 2003; 76:137–143.PubMedGoogle Scholar
  77. 77.
    Beitz E, Kumagami H, Krippeit-Drews P et al. Expression pattern of aquaporin water channels in the inner ear of the rat. Hear Res 1999; 132:76–84.PubMedGoogle Scholar
  78. 78.
    Ishiyama G, López IA, Ishiyama A. Aquaporins and Meniere’s disease. Curr Opin Otolaryngol Head Neck Surg 2006; 14:332–336.PubMedGoogle Scholar
  79. 79.
    Zador Z, Bloch O, Yao X et al. Aquaporins: role in cerebral edema and brain water balance. Prog Brain Res 2007; 161:185–194.PubMedGoogle Scholar
  80. 80.
    Papadopoulos MC, Saadoun S, Verkman AS. Aquaporins and cell migration. Pflügers Arch 2008; 456:693–700.PubMedGoogle Scholar
  81. 81.
    Agre P, Mathai JC, Smith BL et al. Functional analyses of aquaporin water channel proteins. Methods Enzymol 1999; 294:550–572.PubMedGoogle Scholar
  82. 82.
    Savage DF, Stroud RM. Structural basis of aquaporin inhibition by mercury. J Mol Biol 2007; 68:607–617.Google Scholar
  83. 83.
    Preston GM, Carroll TP, Guggino WB et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992; 256:385–387.PubMedGoogle Scholar
  84. 84.
    Niemietz CM, Tyerman SD. New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 2002; 531:443–447.PubMedGoogle Scholar
  85. 85.
    Zelenina M, Bondar AA, Zelenin S et al. Nickel and extracellular acidification inhibit the water permeability of human aquaporin-3 in lung epithelial cells. J Biol Chem 2003; 278:30037–30043.PubMedGoogle Scholar
  86. 86.
    Zelenina M, Tritto S, Bondar AA et al. Copper inhibits the water and glycerol permeability of aquaporin-3. J Biol Chem 2004; 279:51939–51943.PubMedGoogle Scholar
  87. 87.
    Yellen G, Jurman ME, Abramson T et al. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 1991; 251:939–942.PubMedGoogle Scholar
  88. 88.
    Brooks HL, Regan JW, Yool AJ. Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region. Mol Pharmacol 2000; 57:1021–1026.PubMedGoogle Scholar
  89. 89.
    Detmers FJ, de Groot BL, Müller EM et al. Quaternary ammonium compounds as waterchannel blockers. Specificity, potency and site of action. J Biol Chem 2006; 281:14207–14214.PubMedGoogle Scholar
  90. 90.
    Yool AJ, Brokl OH, Pannabecker TL et al. Tetraethylammonium block of water flux in Aquaporin-1 channels expressed in kidney thin limbs of Henle’s loop and a kidney-derived cell line. BMC Physiol 2002; 2:4.PubMedGoogle Scholar
  91. 91.
    Wu B, Altmann K, Barzel I et al. A yeast-based phenotypic screen for aquaporin inhibitors. Pflugers Arch 2008; 456:717–720.PubMedGoogle Scholar
  92. 92.
    Preston GM, Jung JS, Guggino WB et al. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J Biol Chem 1994; 269:1668–1673.PubMedGoogle Scholar
  93. 93.
    van Hoek AN, Wiener MC, Verbavatz JM et al. Purification and structure-function analysis of native, PNGase F-treated and endo-beta-galactosidase-treated CHIP28 water channels. Biochemistry 1995; 34:2212–2219.PubMedGoogle Scholar
  94. 94.
    Søgaard R, Zeuthen T. Test of blockers of AQP1 water permeability by a high-resolution method: no effects of tetraethylammonium ions or acetazolamide. Pflügers Arch 2008; 456:285–292.PubMedGoogle Scholar
  95. 95.
    Yang B, Kim JK, Verkman AS. Comparative efficacy of HgCl2 with candidate aquaporin-1 inhibitors DMSO, gold, TEA+ and acetazolamide. FEBS Lett 2006; 580:6679–6684.PubMedGoogle Scholar
  96. 96.
    Ma B, Xiang Y, Mu SM et al. Effects of acetazolamide and anordiol on osmotic water permeability in AQP1-cRNA injected Xenopus oocyte. Acta Pharmacol Sin 2004; 25:90–97.PubMedGoogle Scholar
  97. 97.
    Huber VJ, Tsujita M, Yamazaki M et al. Identification of arylsulfonamides as Aquaporin 4 inhibitors. Bioorg Med Chem Lett 2007; 17:1270–1273.PubMedGoogle Scholar
  98. 98.
    Huber VJ, Tsujita M, Kwee IL et al. Inhibition of Aquaporin 4 by antiepileptic drugs. Bioorg Med Chem 2008; 17:418–424.PubMedGoogle Scholar
  99. 99.
    Yang B, Zhang H, Verkman AS. Lack of aquaporin-4 water transport inhibition by antiepileptics and arylsulfonamides. Bioorg Med Chem 2008; 16:7489–7493.PubMedGoogle Scholar
  100. 100.
    Sui H, Han BG, Lee JK et al. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001; 414:872–878.PubMedGoogle Scholar
  101. 101.
    Beitz E, Wu B, Holm LM et al. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia and protons. Proc Natl Acad Sci USA 2006; 103:269–274.PubMedGoogle Scholar
  102. 102.
    Wu B, Beitz E. Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 2007; 64:2413–2421.PubMedGoogle Scholar
  103. 103.
    Pukrittayakamee S, White NJ, Davis TM et al. Glycerol metabolism in severe falciparum malaria. Metabolism 1994; 43:887–892.PubMedGoogle Scholar
  104. 104.
    Kishida K, Shimomura I, Kondo H et al. Genomic structure and insulin-mediated repression of the aquaporin adipose (AQPap), adipose-specific glycerol channel. J Biol Chem 2001; 276:36251–36260.PubMedGoogle Scholar
  105. 105.
    Carbrey JM, Gorelick-Feldman DA, Kozono D et al. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci USA 2003; 100:2945–2950.PubMedGoogle Scholar
  106. 106.
    Holz GG Jr. Lipids and the malarial parasite. Bull World Health Organ 1977; 55:237–248.PubMedGoogle Scholar
  107. 107.
    Zeuthen T, Wu B, Pavlovic-Djuranovic S et al. Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol Microbiol 2006; 61:1598–1608.PubMedGoogle Scholar
  108. 108.
    Promeneur D, Liu Y, Maciel J et al. Aquaglyceroporin PbAQP during intraerythrocytic development of the malaria parasite Plasmodium berghei. Proc Natl Acad Sci USA 2007; 104:2211–2216.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Medicinal ChemistryUniversity of KielKielGermany
  2. 2.Department of Molecular Microbiology and Infectious DiseasesFlorida International University College of MedicineMiamiUSA

Personalised recommendations