Major Intrinsic Proteins in Biomimetic Membranes

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 679)


Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device?


Lipid Bilayer Reverse Osmosis Xenopus Oocyte Phosphatidyl Choline Lipid Bilayer Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nernst W. Zur Theorie des electrischen Reizes. Pfluegers Arch Physiol 1909; 122:275–314.CrossRefGoogle Scholar
  2. 2.
    Byrne W. Reverse Osmosis. 2nd ed. Littleton: Tall Oaks Publishing Inc., 2002.Google Scholar
  3. 3.
    Lee S, Lee E, Ra J et al. Characterization of marine organic matters and heavy metals with respect to desalination with RO and NF membranes. Desalination 2008; 221:244–252.CrossRefGoogle Scholar
  4. 4.
    Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem 2009; 395:607–718.Google Scholar
  5. 5.
    Kumar M, Grzelakowski M, Zilles J et al. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc Natl Acad Sci USA 2007; 104:20719–20724.PubMedCrossRefGoogle Scholar
  6. 6.
    Mulcahy E. Water Filter. Nano: The Magazine for Small Science 2009; Issue 12:17–19.Google Scholar
  7. 7.
    Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 1997; 66:199–232.PubMedCrossRefGoogle Scholar
  8. 8.
    Sackmann E. Physical basis of trigger processes and membrane structures. In: Chapman D, ed. Biological Membranes. London: Academic Press Inc Ltd, 1984; 5:105–143.Google Scholar
  9. 9.
    Vind-Kezunovic D, Nielsen CH, Wojewodzka U et al. Line tension at lipid phase boundaries regulates formation of membrane vesicles in living cells. Biochim Biophys Acta 2008; 1778:2480–2486.PubMedCrossRefGoogle Scholar
  10. 10.
    Lundbaek JA. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein. J Phys Condens Matter 2006; 18:S1305–S1344.CrossRefGoogle Scholar
  11. 11.
    Nielsen CH. Lipid-protein interactions in biomembranes. In: Bohr HG, ed. Handbook of Molecular Biophysics. Berlin: Wiley, 2009:329–358.Google Scholar
  12. 12.
    Ti Tien H. Bilayer lipid membranes (BML) Theory and practice. 1st ed. New York: Marcel Dekker Inc., 1974.Google Scholar
  13. 13.
    Ottova A, Tien HT. The 40th anniversary of bilayer lipid membrane research. Bioelectrochemistry 2002; 56:171–173.PubMedCrossRefGoogle Scholar
  14. 14.
    Mayer M, Kriebel JK, Tosteson MT et al. Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys J 2003; 85:2684–2695.PubMedCrossRefGoogle Scholar
  15. 15.
    Suzuki H, Tabata KV, Noji H et al. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. Langmuir 2006; 22:1937–1942.PubMedCrossRefGoogle Scholar
  16. 16.
    Malmstadt N, Nash MA, Purnell RF et al. Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett 2006; 6:1961–1965.PubMedCrossRefGoogle Scholar
  17. 17.
    Zagnoni M, Sandison ME, Morgan H. Microfluidic array platform for simultaneous lipid bilayer membrane formation. Biosens Bioelectron 2009; 24:1235–1240.PubMedCrossRefGoogle Scholar
  18. 18.
    Sandison ME, Zagnoni M, Abu-Hantash M et al. Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system. J Micromech Microeng 2007; 17:S189–S196.CrossRefGoogle Scholar
  19. 19.
    Hansen JS, Perry ME, Vogel J et al. Development of an automation technique for the establishment of functional lipid bilayer arrays. J Micromech Microeng 2009; 19:025014.Google Scholar
  20. 20.
    Vogel J, Perry ME, Hansen JS et al. Support structure for biomimetic applications. J Micromech Microeng 2009; 19:025026.Google Scholar
  21. 21.
    Hansen JS, Perry M, Vogel J et al. Large scale biomimetic membrane arrays. Anal Bioanal Chem 2009; 395:719–727.PubMedCrossRefGoogle Scholar
  22. 22.
    Meier W, Nardin C, Winterhalter M. Reconstitution of channel proteins in (polymerized) ABA triblock copolymer membranes. Angew Chem Int Ed Engl 2000; 39:4599–4602.PubMedCrossRefGoogle Scholar
  23. 23.
    Ho D, Chu B, Lee H et al. Protein-driven transduction across polymeric biomembranes. Nanotechnology 2004; 15:1084–1094.CrossRefGoogle Scholar
  24. 24.
    Reimhult E, Kumar K. Membrane biosensor platforms using nano-and microporous supports. Trends Biotechnol 2008; 26:82–89.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang L, Granick S. Dynamical heterogeneity in supported lipid bilayers. MRS Bulletin 2006; 31:527–531.Google Scholar
  26. 26.
    Tanaka M. Polymer-suppoted membranes: Physical models of cell surfaces. MRS Bulletin 2006; 31:513–520.Google Scholar
  27. 27.
    Parikh AN, Groves JT. Materials Science of Supported Lipid Membranes. MRS Bulletin 2006; 31:507–512.Google Scholar
  28. 28.
    Sackmann E, Tanaka M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol 2000; 18:58–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Sackmann E. Supported membranes: scientific and practical applications. Science 1996; 271:43–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Rossi C, Chopineau J. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur Biophys J 2007; 36:955–965.PubMedCrossRefGoogle Scholar
  31. 31.
    Koper I. Insulating tethered bilayer lipid membranes to study membrane proteins. Mol Biosyst 2007; 3:651–657.PubMedCrossRefGoogle Scholar
  32. 32.
    Gagner J, Johnson H, Watkins E et al. Carbon nanotube supported single phospholipid bilayer. Langmuir 2006; 22:10909–10911.PubMedCrossRefGoogle Scholar
  33. 33.
    Löfås S, Johnsson BJ. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. Chem Soc Chem Commun 1990;1526–1528.Google Scholar
  34. 34.
    Dong Y, Scott Phillips K, Chen Q. Immunosensing of Staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes. Lab on a Chip 2006; 6:675–681.PubMedCrossRefGoogle Scholar
  35. 35.
    Steltze M. On the application of supported bilayers as receptive layers for biosensors with electrical detection. J Phys Chem 1993; 97:2974–2981.CrossRefGoogle Scholar
  36. 36.
    Becucci L, Leon RR, Moncelli MR et al. Electrochemical investigation of melittin reconstituted into a mercury-supported lipid bilayer. Langmuir 2006; 22:6644–6650.PubMedCrossRefGoogle Scholar
  37. 37.
    Becucci L, Moncelli MR, Naumann R et al. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer. J Am Chem Soc 2005; 127:13316–13323.PubMedCrossRefGoogle Scholar
  38. 38.
    Becucci L, Moncelli MR, Guidelli R. Impedance spectroscopy of OmpF porin reconstituted into a mercury-supported lipid bilayer. Langmuir 2006; 22:1341–1346.PubMedCrossRefGoogle Scholar
  39. 39.
    Ho D, Chu B, Lee H et al. Protein-driven energy tranduction across polymeric biomembranes. Nanotechnology 2004; 15:1084–1094.CrossRefGoogle Scholar
  40. 40.
    Holden MA, Needham D, Bayley H. Functional bionetworks from nanoliter water droplets. J Am Chem Soc 2007; 129:8650–8655.PubMedCrossRefGoogle Scholar
  41. 41.
    Funakoshi K, Suzuki H, Takeuchi S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal Chem 2006; 78:8169–8174.PubMedCrossRefGoogle Scholar
  42. 42.
    Zagnoni M, Sandison ME, Marius P et al. Bilayer lipid membranes from falling droplets. Anal Bioanal Chem 2009; 393:1601–1605.PubMedCrossRefGoogle Scholar
  43. 43.
    Schuster B, Sleytr UB, Diederich A et al. Probing the stability of S-layer-supported planar lipid membranes. Eur Biophys J 1999; 28:583–590.PubMedCrossRefGoogle Scholar
  44. 44.
    Schuster B, Sleytr UB. The effect of hydrostatic pressure on S-layer-supported lipid membranes. Biochim Biophys Acta 2002; 1563:29–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Sleytr UB, Egelseer EM, Ilk N et al. S-Layers as a basic building block in a molecular construction kit. FEBS J 2007; 274:323–334.PubMedCrossRefGoogle Scholar
  46. 46.
    Jeon TJ, Malmstadt N, Schmidt JJ. Hydrogel-encapsulated lipid membranes. J Am Chem Soc 2006; 128:42–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Jeon TJ, Poulos JL, Schmidt J. Storable and transportable lipid bilayer membrane precursor. Biophysical Journal Abstracts 2008: 337a.Google Scholar
  48. 48.
    Shim JW, Gu LQ. Stochastic sensing on a modular chip containing a single-ion channel. Anal Chem 2007; 79:2207–2213.PubMedCrossRefGoogle Scholar
  49. 49.
    Szewczykowski P. Nano-porous materials from diblock copolymers and their membrane application. PhD Thesis. Lyngby: Department of Chemical and Biochemical Engineering, Technical University of Denmark; 2009.Google Scholar
  50. 50.
    Gonen T, Walz T. The structure of aquaporins. Q Rev Biophys 2006; 39:361–396.PubMedCrossRefGoogle Scholar
  51. 51.
    Fu D, Lu M. The structural basis of water permeation and proton exclusion in aquaporins. Mol Membr Biol 2007; 24:366–374.PubMedCrossRefGoogle Scholar
  52. 52.
    Ishibashi K. Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta 2006; 1758:989–993.PubMedCrossRefGoogle Scholar
  53. 53.
    Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 2005; 118:3225–3232.PubMedCrossRefGoogle Scholar
  54. 54.
    Nielsen S, Frokiaer J, Marples D et al. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002; 82:205–244.PubMedGoogle Scholar
  55. 55.
    Denker BM, Smith BL, Kuhajda FP et al. Identification, purification and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 1988; 263:15634–15642.PubMedGoogle Scholar
  56. 56.
    Preston GM, Carroll TP, Guggino WB et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992; 256:385–387.PubMedCrossRefGoogle Scholar
  57. 57.
    Zeidel ML, Ambudkar SV, Smith BL et al. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 1992; 31:7436–7440.PubMedCrossRefGoogle Scholar
  58. 58.
    Agre P, Sasaki S, Chrispeels MJ. Aquaporins: a family of water channel proteins. Am J Physiol 1993; 265:F461.PubMedGoogle Scholar
  59. 59.
    Yasui M. Molecular mechanisms and drug development in aquaporin water channel diseases: structure and function of aquaporins. J Pharmacol Sci 2004; 96:260–263.PubMedCrossRefGoogle Scholar
  60. 60.
    Sasaki S. Introduction for Special issue for aquaporin: Expanding the world of aquaporins: new members and new functions. Pflugers Arch 2008; 456:647–649.PubMedCrossRefGoogle Scholar
  61. 61.
    Verbavatz JM, Brown D, Sabolic I et al. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol 1993; 123:605–]ReferencesPubMedCrossRefGoogle Scholar
  62. 62.
    Yang B, Brown D, Verkman AS. The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 1996; 271:4577–4580.PubMedCrossRefGoogle Scholar
  63. 63.
    Verbavatz JM, Ma T, Gobin R et al. Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 1997; 110:2855–2860.PubMedGoogle Scholar
  64. 64.
    Palanivelu DV, Kozono DE, Engel A et al. Co-axial association of recombinant eye lens aquaporin-0 observed in loosely packed 3D crystals. J Mol Biol 2006; 355:605–611.PubMedCrossRefGoogle Scholar
  65. 65.
    Borgnia MJ, Agre P. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci USA 2001; 98:2888–2893.PubMedCrossRefGoogle Scholar
  66. 66.
    Calamita G, Bishai WR, Preston GM et al. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 1995; 270:29063–29066.PubMedCrossRefGoogle Scholar
  67. 67.
    Fu D, Libson A, Miercke LJ et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 2000; 290:481–486.PubMedCrossRefGoogle Scholar
  68. 68.
    Anthony TL, Brooks HL, Boassa D et al. Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol Pharmacol 2000; 57:576–588.PubMedGoogle Scholar
  69. 69.
    Cooper GJ, Boron WF. Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Physiol 1998; 275:C1481–1486.PubMedGoogle Scholar
  70. 70.
    Herrera M, Hong NJ, Garvin JL. Aquaporin-1 transports NO across cell membranes. Hypertension 2006; 48:157–164.PubMedCrossRefGoogle Scholar
  71. 71.
    Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM et al. Transport of NH(3)/NH in oocytes expressing aquaporin-1. Am J Physiol Renal Physiol 2001; 281:F255–263.PubMedGoogle Scholar
  72. 72.
    Yasui M, Kwon TH, Knepper MA et al. Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. Proc Natl Acad Sci USA 1999; 96:5808–5813.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu Z, Shen J, Carbrey JM et al. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 2002; 99:6053–6058.PubMedCrossRefGoogle Scholar
  74. 74.
    Stroud RM, Miercke LJ, O’Connell J et al. Glycerol facilitator GlpF and the associated aquaporin family of channels. Curr Opin Struct Biol 2003; 13:424–431.PubMedCrossRefGoogle Scholar
  75. 75.
    Stroud RM, Savage D, Miercke LJ et al. Selectivity and conductance among the glycerol and water conducting aquaporin family of channels. FEBS Lett 2003; 555:79–84.PubMedCrossRefGoogle Scholar
  76. 76.
    Verkman AS. Does aquaporin-1 pass gas? An opposing view. J Physiol 2002; 542:31.PubMedCrossRefGoogle Scholar
  77. 77.
    Wu B, Beitz E. Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 2007; 64:2413–2421.PubMedCrossRefGoogle Scholar
  78. 78.
    Bienert GP, Schussler MD, Jahn TP. Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 2008; 33:20–26.PubMedCrossRefGoogle Scholar
  79. 79.
    Nemeth-Cahalan KL, Hall JE. pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem 2000; 275:6777–6782.PubMedCrossRefGoogle Scholar
  80. 80.
    Nemeth-Cahalan KL, Kalman K, Hall JE. Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. J Gen Physiol 2004; 123:573–580.PubMedCrossRefGoogle Scholar
  81. 81.
    Johansson I, Larsson C, Ek B et al. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 1996; 8:1181–1191.PubMedCrossRefGoogle Scholar
  82. 82.
    Johansson I, Karlsson M, Shukla VK et al. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 1998; 10:451–459.PubMedCrossRefGoogle Scholar
  83. 83.
    Zeuthen T, Klaerke DA. Transport of water and glycerol in aquaporin 3 is gated by H(+). J Biol Chem 1999; 274:21631–21636.PubMedCrossRefGoogle Scholar
  84. 84.
    Yasui M, Hazama A, Kwon TH et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature 1999; 402:184–187.PubMedCrossRefGoogle Scholar
  85. 85.
    Bowie JU. Stabilizing membrane proteins. Curr Opin Struct Biol 2001; 11:397–402.PubMedCrossRefGoogle Scholar
  86. 86.
    Andersen OS, Koeppe RE, 2nd. Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 2007; 36:107–130.PubMedCrossRefGoogle Scholar
  87. 87.
    Tajkhorshid E, Nollert P, Jensen MO et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 2002; 296:525–530.PubMedCrossRefGoogle Scholar
  88. 88.
    Sanders OI, Rensing C, Kuroda M et al. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 1997; 179:3365–3367.PubMedGoogle Scholar
  89. 89.
    Takano J, Wada M, Ludewig U et al. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 2006; 18:1498–1509.PubMedCrossRefGoogle Scholar
  90. 90.
    Tanaka M, Wallace IS, Takano J et al. NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 2008; 20:2860–2875.PubMedCrossRefGoogle Scholar
  91. 91.
    Kato Y, Miwa K, Takano J et al. Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol 2009; 50:58–66.PubMedCrossRefGoogle Scholar
  92. 92.
    Rosen BP, Liu Z. Transport pathways for arsenic and selenium: a minireview. Environ Int 2009; 35:512–515.PubMedCrossRefGoogle Scholar
  93. 93.
    Ludewig U, Dynowski M. Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet. Cell Mol Life Sci 2009.Google Scholar
  94. 94.
    Hanaoka H, Fujiwara F. Channel-mediated boron transport in rice. Plant Cell Physiol 2007; 48:227.Google Scholar
  95. 95.
    Bienert GP, Thorsen M, Schussler MD et al. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 2008; 6:26.PubMedCrossRefGoogle Scholar
  96. 96.
    Saha JC, Dikshit AK, Bandyopadhyay M et al. A review of arsenic poisoning and its effects on human health. Crit Rev Env Sci Technol 1999; 29:281–313.CrossRefGoogle Scholar
  97. 97.
    Roy P, Saha A. Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci 2002; 82:38–45.Google Scholar
  98. 98.
    Cullen WR, Reimers KJ. Arsenic speciation in the environment. Chem Rev 1989; 89:713–764.CrossRefGoogle Scholar
  99. 99.
    Aposhian HV. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 1997; 37:397–419.PubMedCrossRefGoogle Scholar
  100. 100.
    Mok WM, Wai CM. Mobilization of arsenic in contaminated river waters. In: Nriagu JO, ed. Arsenic in the Environment, Part 1, Cycling and Characterization. New York: John Wiley and Sons, 1994.Google Scholar
  101. 101.
    Liu Z, Carbrey JM, Agre P et al. Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 2004; 316:1178–1185.PubMedCrossRefGoogle Scholar
  102. 102.
    Yang HC, Cheng J, Finan TM et al. Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 2005; 187:6991–6997.PubMedCrossRefGoogle Scholar
  103. 103.
    Kamiya T, Tanaka M, Mitani N et al. NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 2009; 284:2114–2120.PubMedCrossRefGoogle Scholar
  104. 104.
    Ma JF, Yamaji N, Mitani N et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 2008; 105:9931–9935.PubMedCrossRefGoogle Scholar
  105. 105.
    Meng YL, Liu Z, Rosen BP. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 2004; 279:18334–18341.PubMedCrossRefGoogle Scholar
  106. 106.
    Liu Z, Styblo M, Rosen BP. Methylarsonous acid transport by aquaglyceroporins. Environ Health Perspect 2006; 114:527–531.PubMedCrossRefGoogle Scholar
  107. 107.
    Porquet A, Filella M. Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem Res Toxicol 2007; 20:1269–1276.PubMedCrossRefGoogle Scholar
  108. 108.
    Pokrovski G, Gout R, Schott J et al. Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim Cosmochim Acta 1996; 61:737–749.CrossRefGoogle Scholar
  109. 109.
    Sexton LT, Horne LP, Martin CR. Developing synthetic conical nanopores for biosensing applications. Mol Biosyst 2007; 3:667–685.PubMedCrossRefGoogle Scholar
  110. 110.
    Jeon YJ, Kim H, Jon S et al. Artificial ion channel formed by cucurbit[n]uril derivatives with a carbonyl group fringed portal reminiscent of the selectivity filter of K+ channels. J Am Chem Soc 2004; 126:15944–15945.PubMedCrossRefGoogle Scholar
  111. 111.
    Cass A, Finkelstein A. Water permeability of thin lipid membranes. J Gen Physiol 1967; 50:1765–1784.PubMedCrossRefGoogle Scholar
  112. 112.
    Levine SD, Jacoby M, Finkelstein A. The water permeability of toad urinary bladder. II. The value of Pf/Pd(w) for the antidiuretic hormone-induced water permeation pathway. J Gen Physiol 1984; 83:543–561.PubMedCrossRefGoogle Scholar
  113. 113.
    Mlekoday HJ, Moore R, Levitt DG. Osmotic water permeability of the human red cell. Dependence on direction of water flow and cell volume. J Gen Physiol 1983; 81:213–220.PubMedCrossRefGoogle Scholar
  114. 114.
    Finkelstein A, ed. Water movement through lipid bilayers, pores and plasma membranes. Theory and Reality. New York: Wiley-Interscience, 1987.Google Scholar
  115. 115.
    Finkelstein A, Cass A. Effect of cholesterol on the water permeability of thin lipid membranes. Nature 1967; 216:717–718.PubMedCrossRefGoogle Scholar
  116. 116.
    Andersen OS. Permeability properties of unmodified lipid bilayer membranes. Membrane Transport in Biology 1978; 1:369–446.Google Scholar
  117. 117.
    Barchfeld GL, Deamer DW. The effect of general anesthetics on the proton and potassium permeabilities of liposomes. Biochim Biophys Acta 1985; 819:161–169.PubMedCrossRefGoogle Scholar
  118. 118.
    Gliozzi A, Relini A, Lee-Gau Chong P. Structure and permeability properties of biomimetic membranes of archaeal bolaform tetraether lipids. J Mem Sci 2002; 206:131–147.CrossRefGoogle Scholar
  119. 119.
    Suwalsky M, Rivera C, Villena F et al. Arsenite interactions with phospholipid bilayers as molecular models for the human erythrocyte membrane. Biophys Chem 2007; 127:28–35.PubMedCrossRefGoogle Scholar
  120. 120.
    Jemiola-Rzeminska M, Rivera C, Suwalsky M et al. Interaction of arsenic compounds with model phospholipid membranes. Thermochim Acta 2007; 458:132–137.CrossRefGoogle Scholar
  121. 121.
    Suwalsky M, Rivera C, Sotomayor CP et al. Monomethylarsonate (MMAv) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers. Biophys Chem 2008; 132:1–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Sangster J. Octanol-Water Partition Coefficients Chichester: John Wiley and Sons Ltd, 1997.Google Scholar
  123. 123.
    Zador Z, Stiver S, Wang V et al. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 2009: 159–170.Google Scholar
  124. 124.
    Spring JH, Robichaux SR, Hamlin JA. The role of aquaporins in excretion in insects. J Exp Biol 2009; 212:358–362.PubMedCrossRefGoogle Scholar
  125. 125.
    Cath TY, Childress AE, Elimelech M. Forward osmosis: principles, applications and recent developments. J Mem Sci 2006; 281:70–87.CrossRefGoogle Scholar
  126. 126.
    Loeb S, Norman RS. Osmotic Power Plants. Science 1975; 189:654–655.PubMedCrossRefGoogle Scholar
  127. 127.
    Skilhagen SE, Dugstad JE, Aaberg RJ. Osmotic power—power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination 2008; 220:476–482.CrossRefGoogle Scholar
  128. 128.
    Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 1958; 27:229–246.PubMedCrossRefGoogle Scholar
  129. 129.
    Kedem O, Katchalsky A. A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol 1961; 45:143–179.PubMedCrossRefGoogle Scholar
  130. 130.
    Nernst W. Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Physk Chem (Leipzig) 1904; 47:52.Google Scholar
  131. 131.
    Schulman JH, Teorell T. On the boundary layer at membrane and monolayer interfaces. Trans Faraday Soc 1938; 34:1337.CrossRefGoogle Scholar
  132. 132.
    Levich VG. Physicochemical Hydrodynamics. Englewood Cliffs, NJ, USA.: Prentice-Hall, 1962.Google Scholar
  133. 133.
    Pedley TJ. The interaction between stirring and osmosis. Part 1. J Fluid Mech 1980; 101:843–861.CrossRefGoogle Scholar
  134. 134.
    Pohl P, Saparov SM, Antonenko YN. The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes. Biophys J 1997; 72:1711–1718.PubMedCrossRefGoogle Scholar
  135. 135.
    Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 1997; 272:16140–16146.PubMedCrossRefGoogle Scholar
  136. 136.
    Hashido M, Kidera A, Ikeguchi M. Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 2007; 93:373–385.PubMedCrossRefGoogle Scholar
  137. 137.
    Zeidel ML, Nielsen S, Smith BL et al. Ultrastructure, pharmacologic inhibition and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 1994; 33:1606–1615.PubMedCrossRefGoogle Scholar
  138. 138.
    Walz T, Smith BL, Zeidel ML et al. Biologically active two-dimensional crystals of aquaporin CHIP. J Biol Chem 1994; 269:1583–1586.PubMedGoogle Scholar
  139. 139.
    Pohl P, Saparov SM, Borgnia MJ et al. Highly selective water channel activity measured by voltage clamp: Analysis of planar lipid bilayers reconstituted with purified AqpZ. PNAS 2001; 98:9624–9229.PubMedCrossRefGoogle Scholar
  140. 140.
    Borgnia MJ, Kozono D, Calamita G et al. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J Mol Biol 1999; 291:1169–1179.PubMedCrossRefGoogle Scholar
  141. 141.
    Saparov SM, Tsunoda SP, Pohl P. Proton exclusion by an aquaglyceroprotein: a voltage clamp study. Biol Cell 2005; 97:545–550.PubMedCrossRefGoogle Scholar
  142. 142.
    Walter A, Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membrane Biol 1986; 77:255–264.CrossRefGoogle Scholar
  143. 143.
    Flewelling RF, Hubbell WL. Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys J 1986; 49:531–540.PubMedCrossRefGoogle Scholar
  144. 144.
    Hauser H, Oldani D, Phillips MC. Mechanism of ion escape from phosphatidylcholine and phosphatidylserine single bilayer vesicles. Biochemistry 1973; 12:4507–4517.PubMedCrossRefGoogle Scholar
  145. 145.
    Gutknecht J. Proton/hydroxide conductance through lipid bilayer membranes. J Membr Biol 1984; 82:105–112.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Quantum Protein Center Department of PhysicsTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of PhysicsTechnical University of DenmarkLyngby

Personalised recommendations