Constrained Deformation of Materials pp 169-262 | Cite as

# Heterogeneous Materials

## Abstract

In previous chapters, attention was devoted to materials which are a part of a “structure” so deformation is *externally* constrained by other component(s) of the structure. In many situations, however, there is a structure *inside* the material itself. Examples include all composite and multiphase materials, which are collectively referred to as “heterogeneous materials” here. Strictly speaking, all materials are heterogeneous if the characteristic length scale of concern is at the microstructural or molecular levels. In the present context we focus only on the kind of heterogeneity that is represented by domains with different and well-defined mechanical properties in a given material. When the material is subject to mechanical or thermal loading, *internally* constrained deformation occurs. Such internal constraint naturally dictates the effective (overall) properties of the heterogeneous material, and may also directly affect the propensity of damage initiation.

## Keywords

Plastic Strain Indentation Depth Equivalent Plastic Strain Thermal Residual Stress Coarse Structure## References

- 1.R. M. Christensen (1979) Mechanics of composite materials, Wiley, New York.Google Scholar
- 2.R. M. Jones (1999) Mechanics of composite materials, 2nd ed., Taylor and Francis, Philadelphia.Google Scholar
- 3.Z. Hashin (1983) “Analysis of composite materials – A survey,” Journal of Applied Mechanics, vol. 50, pp. 481–505.MATHCrossRefGoogle Scholar
- 4.K. K. Chawla (1998) Composite Materials, Springer, 2nd ed., New York.Google Scholar
- 5.A. T. Alpas, J. D. Embury, D. A. Hardwick and R. W. Springer (1990) “The mechanical properties of laminated microscale composites of Al/Al
_{2}O_{3},” Journal of Materials Science, vol. 25, pp. 1603–1609.CrossRefGoogle Scholar - 6.D. O. Northwood and A. T. Alpas (1998) “Mechanical and tribological properties of nanocrystalline and nanolaminated surface coatings,” Nanostructured Materials, vol. 10, pp. 777–793.CrossRefGoogle Scholar
- 7.G. T. Mearini and R. W. Hoffman (1993) “Tensile properties of aluminum/alumina multi-layered thin films,” Journal of Electronic Materials, vol. 22, pp. 623–629.CrossRefGoogle Scholar
- 8.T. C. Chou, T. G. Niwh, T. Y. Tsui, G. M. Pharr and W. C. Oliver (1992) “Mechanical properties and microstructures of metal/ceramic microlaminates: Part I. Nb/MoSi2 systems,” Journal of Materials Research, vol. 7, pp. 2765–2773.CrossRefGoogle Scholar
- 9.T. C. Chou, T. G. Nieh, S. D. McAdams, G. M. Pharr and W. C. Oliver (1992) “Mechanical properties and microstructures of metal/ceramic microlaminates: Part II. A Mo/Al
_{2}O_{3}system,” Journal of Materials Research, vol. 7, pp. 2774–2784.CrossRefGoogle Scholar - 10.C. H. Liu, Wen-Zhi Li and Heng-De Li (1996) “TiC/metal nacreous structures and their fracture toughness increase,” Journal of Materials Research, vol. 11, pp. 2231–2235.CrossRefGoogle Scholar
- 11.V. P. Godbole, K. Dovidenko, A. K. Sharma and J. Narayan (1999) “Thermal reactions and micro-structure of TiN–AlN layered nano-composites,” Materials Science and Engineering B, vol. 68, pp. 85–90.CrossRefGoogle Scholar
- 12.P. C. LeBaron, Z. Wang and T. J. Pinnavaia (1999) “Polymer-layered silicate nanocomposites: an overview,” Applied Clay Science, vol. 15, pp. 11–29.CrossRefGoogle Scholar
- 13.M. Ben Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, Ph. Houdy and J. L. Bozet (2000) “Nanoindentation investigation of Ti/TiN multilayers films,” Journal of Applied Physics, vol. 87, pp. 7753–7757.CrossRefGoogle Scholar
- 14.J. H. Lee, W. M. Kim, T. S. Lee, M. K. Chung, B.-K. Cheong and S. G. Kim (2000) “Mechanical and adhesion properties of Al/AlN multilayered thin films,” Surface and Coatings Technology, vol. 133–134, pp. 220–226.CrossRefGoogle Scholar
- 15.A. Lousa, J. Romero, E. Martýnez, J. Esteve, F. Montala and L. Carreras (2001) “Multilayered chromium/chromium nitride coatings for use in pressure die-casting,” Surface and Coatings Technology, vol. 146–147, pp. 268–273.CrossRefGoogle Scholar
- 16.I. Luzinov, D. Julthongpiput, V. Gorbunov and V. V. Tsukruk (2001) “Nanotribological behavior of tethered reinforced polymer nanolayer coatings,” Tribology International, vol. 34, pp. 327–333.CrossRefGoogle Scholar
- 17.M. Xiao, L. Sun, J. Liu, Y. Li and K. Gong (2002) “Synthesis and properties of polystyrene/graphite nanocomposites,” Polymer, vol. 43, pp. 2245–2248.CrossRefGoogle Scholar
- 18.J. Romero, A. Lousa, E. Martinez and J. Esteve (2003) “Nanometric chromium/chromium carbide multilayers for tribological applications,” Surface and Coatings Technology, vol. 163–164, pp. 392–397.CrossRefGoogle Scholar
- 19.M. A. Phillips, B. M. Clemens and W. D. Nix (2003) “Microstructure and nanoindentation hardness of Al/Al
_{3}Sc multilayers,” Acta Materialia, vol. 51, pp. 3171–3184.CrossRefGoogle Scholar - 20.D.-H. Kuo and K.-H. Tzeng (2004) “Characterization and properties of r.f.-sputtered thin films of the alumina-titania system,” Thin Solid Films, vol. 460, pp. 327–334.CrossRefGoogle Scholar
- 21.X. Deng, N. Chawla, K. K. Chawla, M. Koopman and J. P. Chu (2005) “Mechanical behavior of multilayered nanoscale metal-ceramic composites,” Advanced Engineering Materials, vol. 7, pp. 1099–1108.CrossRefGoogle Scholar
- 22.N. Chawla, D. R. P. Singh, Y.-L, Shen, G. Tang and K. K. Chawla (2008) “Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites,” Journal of Materials Science, vol. 43, pp. 4383–4390.CrossRefGoogle Scholar
- 23.D. Bhattacharyya, N. A. Mara, R. G. Hoagland and A. Misra (2008) “Nanoindentation and microstructural studies of Al/TiN multilayers with unequal volume fractions,” Scripta Materialia, vol. 58, pp. 981–984.CrossRefGoogle Scholar
- 24.G. Tang, D. R. P. Singh, Y.-L. Shen and N. Chawla (2009) “Elastic properties of metal-ceramic nanolaminates measured by nanoindentation,” Materials Science and Engineering A, vol. 502, pp. 79–84.CrossRefGoogle Scholar
- 25.D.L. Windt and J.A. Bellotti (2009) “Performance, structure, and stability of SiC/Al multilayer films for extreme ultraviolet applications,” Applied Optics, vol. 48, pp. 4932–4941.CrossRefGoogle Scholar
- 26.P. Jonnard, K. Le Guen, M.-H. Hu, J.-M. André, E. Meltchakov, C. Hecquet, F. Delmotte and A. Galtayries (2009) “Optical, chemical and depth characterization of Al/SiC periodic multilayers,” Proceedings of SPIE, vol. 7360, 73600O.CrossRefGoogle Scholar
- 27.G. Tang, Y.-L. Shen, D. R. P. Singh and N. Chawla (2008) “Analysis of indentation-derived effective elastic modulus of metal-ceramic multilayers,” International Journal of Mechanics and Materials in Design, vol. 4, pp. 391–398.CrossRefGoogle Scholar
- 28.D. Hull and T. W. Clyne (1996) An introduction to composite materials, 2nd ed., Cambridge University Press, Cambridge.CrossRefGoogle Scholar
- 29.N. Chawla and K. K. Chawla (2006) Metal matrix composites, Springer, New York.Google Scholar
- 30.S. Suresh and A. Mortensen (1998) Fundamentals of functionally graded materials – processing and thermomechanical behavior of graded metals and metal-ceramic composites, IOM Communications, London.Google Scholar
- 31.T. Nakamura and S. Suresh (1993) “Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites,” Acta Metallurgica et Materialia, vol. 41, pp. 1665–1681.CrossRefGoogle Scholar
- 32.J. R. Brockenbrough, S. Suresh and H. A. Wienecke (1991) “Deformation of metal-matrix composites with continuous fibers: Geometrical effects of fiber distribution and shape,” Acta Metallurgica et Materialia, vol. 39, pp. 735–752.CrossRefGoogle Scholar
- 33.J. L. Teply and G. J. Dvorak (1988) “Bounds on overall instantaneous properties of elastic-plastic composites,” Journal of the Mechanics and Physics of Solids, vol. 36, pp. 29–58.MATHCrossRefGoogle Scholar
- 34.H. J. Bohm and F. G. Rammerstorfer (1991) “Micromechanical investigation of the processing and loading of fiber-reinforced metal matrix composites,” Materials Science and Engineering A, vol. 135, pp. 185–188.CrossRefGoogle Scholar
- 35.S. Nemat-Nasser and M. Hori (1993) Micromechanics: overall properties of heterogeneous materials, North-Holland, Amsterdam.MATHGoogle Scholar
- 36.R. K. Everett and R. J. Arsenault (1991) Metal matrix composites: mechanisms and properties, Academic Press, Boston.Google Scholar
- 37.D. Francois, A. Pineau and A. Zaoui (1998) Mechanical behavior of materials, Volume I: elasticity and plasticity, Kluwer, Dordrecht.Google Scholar
- 38.Z. Hashin and S. Shtrikman (1963) “A variational approach to the theory of elastic behavior of multiphase materials,” Journal of the Mechanics and Physics of Solids, vol. 11, pp. 127–140.MathSciNetMATHCrossRefGoogle Scholar
- 39.V. Tvergaard (1982) “On localization in ductile materials containing spherical voids,” International Journal of Fracture, vol. 18, pp. 237–252.Google Scholar
- 40.T. Christman, A. Needleman and S. Suresh (1989) “An experimental and numerical study of deformation in metal-ceramic composites,” Acta Metallurgica et Materialia, vol. 37, pp. 3029–3050.Google Scholar
- 41.V. Tvergaard (1990) “Analysis of tensile properties for a whisker-reinforced metal matrix composites,” Acta Metallurgica et Materialia, vol. 38, pp. 185–194.CrossRefGoogle Scholar
- 42.G. Bao, J. W. Hutchinson and R. M. McMeeking (1991) “Particle reinforcement of ductile matrices against plastic flow and creep,” Acta Metallurgica et Materialia, vol. 39, pp. 1871–1882.CrossRefGoogle Scholar
- 43.G. L. Povirk, A. Needleman and S. R. Nutt (1991) “An analysis of the effect of residual stresses on deformation and damage mechanisms in Al-SiC composites,” Materials Science and Engineering A, vol. 132, pp. 31–38.CrossRefGoogle Scholar
- 44.J. Llorca, A. Needleman and S. Suresh (1991) “An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites,” Acta Metallurgica et Materialia, vol. 39, pp. 2317–2335.CrossRefGoogle Scholar
- 45.M. B. Bush (1992) “An investigation of two- and three-dimensional models for predicting the elastic properties of particulate- and whisker-reinforced composite materials,” Materials Science and Engineering A, vol. 154, pp. 139–148.CrossRefGoogle Scholar
- 46.Y.-L. Shen, M. Finot, A. Needleman and S. Suresh (1994) “Effective elastic response of two-phase composites,” Acta Metallurgica et Materialia, vol. 42, pp. 77–97.CrossRefGoogle Scholar
- 47.M. Taya and R. J. Arsenault (1989) Metal matrix composites – thermomechanical behavior, Pergamon Press, New York.Google Scholar
- 48.S. Suresh, A. Mortensen and A. Needleman (1993) Fundamentals of metal matrix composites, Butterworth-Heinemann, Stoneham, MA.Google Scholar
- 49.T. W. Clyne and P. J. Withers (1993) An introduction to metal matrix composites, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
- 50.N. Chawla and Y.-L. Shen (2001) “Mechanical behavior of particle reinforced metal matrix composites,” Advanced Engineering Materials, vol. 3, pp. 357–370.CrossRefGoogle Scholar
- 51.D. C. Drucker (1966) “The continuum theory of plasticity on the macroscale and the microscale,” Journal of Materials, vol. 1, pp. 873–910.Google Scholar
- 52.D. C. Drucker (1965) “Engineering and continuum aspects of high strength materials,” in V. F. Zackay: High Strength Materials, pp. 795–833, Wiley, New York.Google Scholar
- 53.T. W. Butler and D. C. Drucker (1973) “Yield strength and microstructural scale: A continuum study of pearlitic versus spheroidized steel,” Journal of Applied Mechanics, vol. 40, pp. 780–784.CrossRefGoogle Scholar
- 54.Y.-L. Shen, M. Finot, A. Needleman and S. Suresh (1995) “Effective plastic response of two-phase composites,” Acta Metallurgica et Materialia, vol. 43, pp. 1701–1722.CrossRefGoogle Scholar
- 55.C. L. Hom (1992) “Three-dimensional finite element analysis of plastic deformation in a whisker-reinforced metal matrix composite,” Journal of the Mechanics and Physics of Solids, vol. 40, pp. 991–1008.CrossRefGoogle Scholar
- 56.A. Levy and J. M. Papazian (1990) “Tensile properties of short fiber-reinforced SiC/Al composites: Part II. Finite element analysis,” Metallurgical Transactions A, vol. 21A, pp. 411–420.CrossRefGoogle Scholar
- 57.E. Weissenbek, H. J. Bohm and F. G. Rammerstorfer (1994) “Micromechanical investigations of arrangement effects in particle reinforced metal matrix composites,” Computational Materials Science, vol. 3, pp. 263–278.CrossRefGoogle Scholar
- 58.J. Segurado, C. Gonzalez and J. Llorca (2003) “A numerical investigation of the effect of particle clustering on the mechanical properties of composites,” Acta Materialia, vol. 51, pp. 2355–2369.CrossRefGoogle Scholar
- 59.N. Chawla, R. S. Sidhu and V. V. Ganesh (2006) “Three-dimensional visualization and microstructure-based modeling of deformation in particle reinforced composites,” Acta Materialia, vol. 54, pp. 1541–1548.CrossRefGoogle Scholar
- 60.H. P. Ganser, F. D. Fischer and E. A. Werner (1998) “Large strain behavior of two-phase materials with random inclusions,” Computational Materials Science, vol. 11, pp. 221–226.CrossRefGoogle Scholar
- 61.D. B. Zahl and R. M. McMeeking (1991) “The influence of residual stress on the yielding of metal matrix composites,” Acta Metallurgica et Materialia, vol. 39, pp. 1117–1122.CrossRefGoogle Scholar
- 62.A. Levy and J. M. Papazian (1991) “Elastoplastic finite element analysis of short-fiber reinforced SiC/Al composites – effects of thermal treatment,” Acta Metallurgica et Materialia, vol. 39, pp. 2255–2266.CrossRefGoogle Scholar
- 63.I. Dutta, J. D. Sims and D. M. Seigenthaler (1993) “An analytical study of residual-stress effects on uniaxial deformation of whisker reinforced metal-matrix composites,” Acta Metallurgica et Materialia, vol. 41, pp. 885–908.CrossRefGoogle Scholar
- 64.N. Shi, B. Wilner and R. J. Arsenault (1992) “An FEM study of the plastic deformation processes of whisker reinforced SiC/Al composites,” Acta Metallurgica et Materialia, vol. 40, pp. 2841–2854.CrossRefGoogle Scholar
- 65.L. C. Davis and J. E. Allison (1993) “Residual stresses and their effects on deformation in particle-reinforced metal-matrix composites,” Metallurgical Transactions A, vol. 24A, pp. 2487–2496.CrossRefGoogle Scholar
- 66.N. Chawla, U. Habel, Y.-L. Shen, C. Andres, J. W. Jones and J. E. Allison (2000) “The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites,” Metallurgical and Materials Transactions A, vol. 31A, pp. 531–540.CrossRefGoogle Scholar
- 67.N. Chawla, C. Andres, L. C. Davis, J. W. Jones and J. E. Allison (2000) “The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites,” Metallurgical and Materials Transactions A, vol. 31A, pp. 951–957.Google Scholar
- 68.T. Wilkins and Y.-L. Shen (2001) “Stress enhancement at inclusion particles in aluminum matrix composites: computational modeling and implications to fatigue damage,” Computational Materials Science, vol. 22, pp. 291–299.CrossRefGoogle Scholar
- 69.V. M. Levin (1967) “On the coefficient of thermal expansion of heterogeneous materials,” Mechanics of Solids, vol. 2, pp. 58–61.Google Scholar
- 70.R. A. Schapery (1968) “Thermal expansion coefficients of composite materials based on energy principles,” Journal of Composite Materials, vol. 2, pp. 380–404.CrossRefGoogle Scholar
- 71.B. W. Rosen and Z. Hashin (1970) “Thermal expansion coefficients and specific heats of composite materials,” International Journal of Engineering Sciences, vol. 8, pp. 157–173.CrossRefGoogle Scholar
- 72.E. H. Kerner (1956) “The elastic and thermo-elastic properties of composite media,” Proceedings of the Physical Society B, vol. 69, pp. 808–813.CrossRefGoogle Scholar
- 73.Y.-L. Shen, A Needleman and S. Suresh (1994) “Coefficients of thermal expansion of metal-matrix composites for electronic packaging,” Metallurgical and Materials Transactions A, vol. 25A, pp. 839–850.CrossRefGoogle Scholar
- 74.C. Zweben (1992) “Metal-matrix composites for electronic packaging,” JOM, vol. 44, pp. 15–23.CrossRefGoogle Scholar
- 75.M. K. Premkumar, W. H. Hunt and R. R. Sawtell (1992) “Aluminum composite – materials for multichip modules,” JOM, vol. 44, pp. 24–48.CrossRefGoogle Scholar
- 76.C. Zweben (2005) “Electronic packaging materials,” Advanced Materials and Processes, vol. 163, No. 10, pp. 33–37.Google Scholar
- 77.Y.-L. Shen (1998) “Thermal expansion of metal–ceramic composites: a three-dimensional analysis,” Materials Science and Engineering A, vol. 252, pp. 269–275.CrossRefGoogle Scholar
- 78.M. Olsson, A. E. Giannakopoulos and S. Suresh (1995) “Elastoplastic analysis of thermal cycling: Ceramic particles in a metallic matrix,” Journal of the Mechanics and Physics of Solids, vol. 43, pp. 1639–1671.MATHCrossRefGoogle Scholar
- 79.D. K. Balch, T. J. Fitzgerald, V. J. Michaud, A. Mortensen, Y.-L. Shen and S. Suresh (1996) “Thermal expansion of metals reinforced with ceramic particles and microcellular foams,” Metallurgical and Materials Transactions A, vol. 27A, pp. 3700–3717.CrossRefGoogle Scholar
- 80.Y.-L. Shen (1997) “Combined effects of microvoids and phase contiguity on the thermal expansion of metal-ceramic composites,” Materials Science and Engineering A, vol. 237, pp. 102–108.CrossRefGoogle Scholar
- 81.J. H. Lupinski and R. S. Moore (1989) Polymeric materials for electronics packaging and interconnection, American Chemical Society, Washington.CrossRefGoogle Scholar
- 82.M. G. Pecht, L. T. Nguyen and E. B. Hakim (1995) Plastic-encapsulated microelectronics, Wiley, New York.Google Scholar
- 83.M. Chaturvedi and Y.-L. Shen (1998) “Thermal expansion of particle-filled plastic encapsulant: A micromechanical characterization,” Acta Materialia, vol. 46, pp. 4287–4302.CrossRefGoogle Scholar
- 84.W. M. Wolverton (1987) “The mechanisms and kinetics of solder joint degradation,” Brazing and Soldering, vol. 13, pp. 33–38.Google Scholar
- 85.D. Tribula, D. Grivas, D. R. Frear and J. W. Morris, Jr. (1989) “Microstructural observations of thermomechanically deformed solder joints,” Welding Research Supplement, October, pp. 404s–409s.Google Scholar
- 86.J. H. Lau (1991) Solder joint reliability: theory and applications, Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
- 87.D. R. Frear, H. Morgan, S. Burchett and J. Lau (1994) The mechanics of solder alloy interconnects, Van Nostrand Reinhold, New York.Google Scholar
- 88.W. J. Plumbridge (1996) “Solders in electronics,” Journal of Materials Science, vol. 119, pp. 2501–2514.CrossRefGoogle Scholar
- 89.X. W. Liu and W. J. Plumbridge (2003) “Damage produced in model solder (Sn-37Pb) joints during thermomechanical cycling,” Journal of Electronic Materials, vol. 32, pp. 278–286.CrossRefGoogle Scholar
- 90.W. D. Callister, Jr. (2006) Materials science and engineering: an introduction, 7th ed., Wiley, New York.Google Scholar
- 91.R. Abbaschian, L. Abbaschian and R. E. Reed-Hill (2009) Physical metallurgy principles, 4th ed., Cengage Learning, Stamford, CT.Google Scholar
- 92.Y.-L. Shen, W. Li and H. E. Fang (2001) “Phase structure and cyclic deformation in eutectic tin-lead alloy: A numerical analysis,” Journal of Electronic Packaging, vol. 123, pp. 74–78.CrossRefGoogle Scholar
- 93.M. A. Dudek, R. S. Sidhu, N. Chawla and M. Renavikar (2006) “Microstructure and mechanical behavior of novel rare earth-containing Pb-free solders,” Journal of Electronic Materials, vol. 35, pp. 2088–2097.CrossRefGoogle Scholar
- 94.A. Fisher-Cripps (2002) Nanoindentation, Springer, New York.Google Scholar
- 95.W. C. Oliver and G. M. Pharr (1992) “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, vol. 7, pp. 1564–1538.CrossRefGoogle Scholar
- 96.W. C. Oliver and G. M. Pharr (2004) “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, vol. 19, pp. 3–20.CrossRefGoogle Scholar
- 97.C. A. Schuh (2006) “Nanoindentation studies of materials,” Materials Today, vol. 9(5), pp. 32–40.CrossRefGoogle Scholar
- 98.A. Gouldstone, N. Challacoop, M. Dao, J. Ki, A. M. Minor and Y.-L. Shen (2007) “Indentation across size scales and disciplines: recent developments in experimentation and modeling,” Acta Materialia, vol. 55, pp. 4015–4039.CrossRefGoogle Scholar
- 99.A. Misra, M. Verdier, Y. C. Lu, H. Kung, T. E. Mitchell, M. Nastasi and J. D. Embury (1998) “Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites,” Scripta Materialia, vol. 39, pp. 555–560.CrossRefGoogle Scholar
- 100.A. Misra and H. Kung (2001) “Deformation behavior of nanostructured metallic multilayers,” Advanced Engineering Materials, vol. 3, pp. 217–222.CrossRefGoogle Scholar
- 101.A. Misra, M. J. Demkowicz, J. Wang and R. G. Hoagland (2008) “The multiscale modeling of plastic deformation in metallic nanolayered composites,” JOM, vol. 60(4), pp. 39–42.CrossRefGoogle Scholar
- 102.X. H. Tan and Y.-L. Shen (2005) “Modeling analysis of the indentation-derived yield properties of metallic multilayered composites,” Composites Science and Technology, vol. 65, pp. 1639–1646.CrossRefGoogle Scholar
- 103.G. Tang, Y.-L. Shen, D. R. P. Singh and N. Chawla (2010) “Indentation behavior of metal-ceramic multilayers at the nanoscale: Numerical analysis and experimental verification,” Acta Materialia, doi: 10.1016/j.actamat.2009.11.046.Google Scholar
- 104.Y.-L. Shen and Y. L. Guo (2001) “Indentation modelling of heterogeneous materials,” Modelling and Simulation in Materials Science and Engineering, vol. 9, pp. 391–398.CrossRefGoogle Scholar
- 105.B. D. Kozola and Y.-L Shen (2003) “A mechanistic analysis of the correlation between overall strength and indentation hardness in discontinuously reinforced aluminum,” Journal of Materials Science, vol. 38, pp. 901–907.CrossRefGoogle Scholar
- 106.Y.-L. Shen, J. J. Williams, G. Piotrowski, N. Chawla and Y. L. Guo (2001) “Correlation between tensile and indentation behavior of particle-reinforced metal matrix composites: an experimental and numerical study,” Acta Materialia, vol. 49, pp. 3219–3229.CrossRefGoogle Scholar
- 107.R. Pereyra and Y.-L. Shen (2004) “Characterization of particle concentration in indentation-deformed metal-ceramic composites,” Materials Characterization, vol. 53, pp. 373–380.CrossRefGoogle Scholar