Chemo Fog pp 77-85 | Cite as

Chemotherapy Associated Central Nervous System Damage

  • Jörg Dietrich
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 678)


Chemotherapy is commonly associated with harmful effects to multiple organ systems, including the central nervous system (CNS). Neurotoxicity may manifest as both acute and delayed complications, which is particularly a concern for long-term survivors. Patients may experience a wide range of neurotoxic syndromes, ranging from neuro-vascular complications and focal neurological deficits to generalized neurological decline with cognitive impairment, cortical atrophy and white matter abnormalities.

Along with the use of more aggressive and combined treatment modalities and prolonged survival of cancer patients, neurological complications have been observed with increasing frequency. The mechanisms by which cancer therapy, including chemotherapy and radiation, result in neurological complications, have been poorly understood. Recent studies have now started to unravel the cell-biological basis for commonly seen neurotoxic syndromes and have provided compelling explanations for delayed neurological complications, such as cognitive decline, progressive myelin disruption and brain atrophy.


Progenitor Cell Neural Stem Cell Primary Central Nervous System Lymphoma Neural Progenitor Cell Oligodendrocyte Precursor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 1980; 6(9):1215–1228.PubMedCrossRefGoogle Scholar
  2. 2.
    Packer RJ, Meadows AT, Rorke LB et al. Long-term sequelae of cancer treatment on the central nervous system in childhood. Med Pediatr Oncol 1987; 15(5):241–253.PubMedCrossRefGoogle Scholar
  3. 3.
    DeAngelis LM, Delattre JY, Posner JB. Radiation-induced dementia in patients cured of brain metastases. Neurology 1989; 39(6):789–796.PubMedCrossRefGoogle Scholar
  4. 4.
    Duffner PK. Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. Neurologist 2004; 10(6):293–310.PubMedCrossRefGoogle Scholar
  5. 5.
    Perry A, Schmidt RE. Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 2006; 111(3):197–212.PubMedCrossRefGoogle Scholar
  6. 6.
    Butler RW, Haser JK. Neurocognitive effects of treatment for childhood cancer. Ment Retard Dev Disabil Res Rev 2006; 12(3):184–191.PubMedCrossRefGoogle Scholar
  7. 7.
    Alvarez JA, Scully RE, Miller TL et al. Long-term effects of treatments for childhood cancers. Curr Opin Pediatr 2007; 19(1):23–31.PubMedCrossRefGoogle Scholar
  8. 8.
    van Dam FS, Schagen SB, Muller MJ et al. Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. J Natl Cancer Inst 1998; 90(3):210–218.PubMedCrossRefGoogle Scholar
  9. 9.
    Schagen SB, van Dam FS, Muller MJ et al. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer 1999; 85(3):640–650.PubMedCrossRefGoogle Scholar
  10. 10.
    Brezden CB, Phillips KA, Abdolell M et al. Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 2000; 18(14):2695–2701.PubMedGoogle Scholar
  11. 11.
    Ahles TA, Saykin A. Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Invest 2001; 19(8):812–820.PubMedCrossRefGoogle Scholar
  12. 12.
    Schagen SB, Muller MJ, Boogerd W et al. Late effects of adjuvant chemotherapy on cognitive function: a follow-up study in breast cancer patients. Ann Oncol 2002; 13(9):1387–1397.PubMedCrossRefGoogle Scholar
  13. 13.
    Wefel JS, Lenzi R, Theriault RL et al. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer 2004; 100(11):2292–2299.PubMedCrossRefGoogle Scholar
  14. 14.
    Schagen SB, Muller MJ, Boogerd W et al. Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. J Natl Cancer Inst 2006; 98(23):1742–1745.Google Scholar
  15. 15.
    Hurria A, Rosen C, Hudis C et al. Cognitive function of older patients receiving adjuvant chemotherapy for breast cancer: a pilot prospective longitudinal study. J Am Geriatr Soc 2006; 54(6):925–931.PubMedCrossRefGoogle Scholar
  16. 16.
    Ahles TA, Saykin AJ. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 2007; 7(3):192–201.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dietrich J, Monje M, Wefel J et al. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist 2008; 13(12):1285–1295.PubMedCrossRefGoogle Scholar
  18. 18.
    Saykin AJ, Ahles TA, McDonald BC. Mechanisms of chemotherapy-induced cognitive disorders: neuropsychological, pathophysiological and neuroimaging perspectives. Semin Clin Neuropsychiatry 2003; 8(4):201–216.PubMedGoogle Scholar
  19. 19.
    Stemmer SM, Stears JC, Burton BS et al. White matter changes in patients with breast cancer treated with high-dose chemotherapy and autologous bone marrow support. AJNR Am J Neuroradiol 1994; 15(7):1267–1273.PubMedGoogle Scholar
  20. 20.
    Dropcho EJ. Neurotoxicity of cancer chemotherapy. Semin Neurol 2004; 24(4):419–426.PubMedCrossRefGoogle Scholar
  21. 21.
    Dietrich J, Wen P. Neurologic complications of chemotherapy. In: Schiff D, Kesari S, Wen P, eds. Cancer Neurology in Clinical Practice. 2nd ed. Totowa, New Jersey: Humana Press Inc., 2008;287–326.CrossRefGoogle Scholar
  22. 22.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255(5052):1707–1710.PubMedCrossRefGoogle Scholar
  23. 23.
    Temple S, Alvarez-Buylla A. Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 1999; 9(1):135–141.PubMedCrossRefGoogle Scholar
  24. 24.
    Gage FH. Mammalian neural stem cells. Science 2000; 287(5457):1433–1438.PubMedCrossRefGoogle Scholar
  25. 25.
    Mayer-Proschel M, Kalyani AJ, Mujtaba T et al. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 1997; 19(4):773–785.PubMedCrossRefGoogle Scholar
  26. 26.
    Rao MS, Noble M, Mayer-Proschel M. A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci USA 1998; 95(7):3996–4001.PubMedCrossRefGoogle Scholar
  27. 27.
    Dietrich J, Noble M, Mayer-Proschel M. Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells. Glia 2002; 40(1):65–77.PubMedCrossRefGoogle Scholar
  28. 28.
    Chang A, Nishiyama A, Peterson J et al. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 2000; 20(17):6404–6412.PubMedGoogle Scholar
  29. 29.
    Nishiyama A, Yang Z, Butt A. Astrocytes and NG2-glia: what’s in a name? J Anat 2005; 207(6):687–693.PubMedCrossRefGoogle Scholar
  30. 30.
    Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000; 425(4):479–494.PubMedCrossRefGoogle Scholar
  31. 31.
    Shen Q, Goderie SK, Jin L et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004; 304(5675):1338–1340.PubMedCrossRefGoogle Scholar
  32. 32.
    Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron 2004; 41(5):683–686.PubMedCrossRefGoogle Scholar
  33. 33.
    Sanai N, Tramontin AD, Quinones-Hinojosa A et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004; 427(6976):740–744.PubMedCrossRefGoogle Scholar
  34. 34.
    Quinones-Hinojosa A, Sanai N, Soriano-Navarro M et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 2006; 494(3):415–434.PubMedCrossRefGoogle Scholar
  35. 35.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11):1313–1317.PubMedCrossRefGoogle Scholar
  36. 36.
    Goldman JE, Zerlin M, Newman S et al. Fate determination and migration of progenitors in the postnatal mammalian CNS. Dev Neurosci 1997; 19(1):42–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Marshall CA, Suzuki SO, Goldman JE. Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from and where are they going? Glia 2003; 43(1):52–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Lie DC, Song H, Colamarino SA et al. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 2004; 44:399–421.PubMedCrossRefGoogle Scholar
  39. 39.
    Dietrich J, Kempermann G. Role of endogenous neural stem cells in neurological disease and brain repair. Adv Exp Med Biol 2006; 557:191–220.PubMedCrossRefGoogle Scholar
  40. 40.
    Monje ML, Mizumatsu S, Fike JR et al. Irradiation induces neural precursor-cell dysfunction. Nat Med 2002; 8(9):955–962.PubMedCrossRefGoogle Scholar
  41. 41.
    Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol 2003; 16(2):129–134.PubMedCrossRefGoogle Scholar
  42. 42.
    Dietrich J, Han R, Yang Y et al. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 2006; 5(7):22.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Han R, Yang YM, Dietrich J et al. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol 2008; 7(4):12.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Posner JB. Side effects of chemotherapy. In: Posner JB, ed. Neurologic Complications of Cancer. Philadelphia: F.A. Davis; 1995:282–310.Google Scholar
  45. 45.
    Keime-Guibert F, Napolitano M, Delattre JY. Neurological complications of radiotherapy and chemotherapy. J Neurol 1998; 245(11):695–708.PubMedCrossRefGoogle Scholar
  46. 46.
    Omuro AM, Ben-Porat LS, Panageas KS et al. Delayed neurotoxicity in primary central nervous system lymphoma. Arch Neurol 2005; 62(10):1595–1600.PubMedCrossRefGoogle Scholar
  47. 47.
    Duffner PK. The long term effects of chemotherapy on the central nervous system. J Biol 2006; 5(7):21.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Minisini A, Atalay G, Bottomley A et al. What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncol 2004; 5(5):273–282.PubMedCrossRefGoogle Scholar
  49. 49.
    Shapiro WR, Chernik NL, Posner JB. Necrotizing encephalopathy following intraventricular instillation of methotrexate. Arch Neurol 1973; 28(2):96–102.PubMedCrossRefGoogle Scholar
  50. 50.
    Bashir R, Hochberg FH, Linggood RM et al. Pre-irradiation internal carotid artery BCNU in treatment of glioblastoma multiforme. J Neurosurg 1988; 68(6):917–919.PubMedCrossRefGoogle Scholar
  51. 51.
    Rosenblum MK, Delattre JY, Walker RW et al. Fatal necrotizing encephalopathy complicating treatment of malignant gliomas with intra-arterial BCNU and irradiation: a pathological study. J Neurooncol 1989; 7(3):269–281.PubMedCrossRefGoogle Scholar
  52. 52.
    Newton HB. Intra-arterial chemotherapy of primary brain tumors. Curr Treat Options Oncol 2005; 6(6):519–530.PubMedCrossRefGoogle Scholar
  53. 53.
    Morris GM, Hopewell JW, Morris AD. A comparison of the effects of methotrexate and misonidazole on the germinal cells of the subependymal plate of the rat. Br J Radiol 1995; 68(808):406–412.PubMedCrossRefGoogle Scholar
  54. 54.
    Rzeski W, Pruskil S, Macke A et al. Anticancer agents are potent neurotoxins in vitro and in vivo. Ann Neurol 2004; 56(3):351–360.PubMedCrossRefGoogle Scholar
  55. 55.
    Nutt CL, Noble M, Chambers AF et al. Differential expression of drug resistance genes and chemosensitivity in glial cell lineages correlate with differential response of oligodendrogliomas and astrocytomas to chemotherapy. Cancer Res 2000; 60(17):4812–4818.PubMedGoogle Scholar
  56. 56.
    Cairncross JG, Ueki K, Zlatescu MC et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90(19):1473–1479.PubMedCrossRefGoogle Scholar
  57. 57.
    Brown MS, Stemmer SM, Simon JH et al. White matter disease induced by high-dose chemotherapy: longitudinal study with MR imaging and proton spectroscopy. AJNR Am J Neuroradiol 1998; 19(2):217–221.PubMedGoogle Scholar
  58. 58.
    Hook CC, Kimmel DW, Kvols LK et al. Multifocal inflammatory leukoencephalopathy with 5-fluorouracil and levamisole. Ann Neurol 1992; 31(3):262–267.PubMedCrossRefGoogle Scholar
  59. 59.
    Fassas AB, Gattani AM, Morgello S. Cerebral demyelination with 5-fluorouracil and levamisole. Cancer Invest 1994; 12(4):379–383.PubMedCrossRefGoogle Scholar
  60. 60.
    Luppi G, Zoboli A, Barbieri F et al. Multifocal leukoencephalopathy associated with 5-fluorouracil and levamisole adjuvant therapy for colon cancer. A report of two cases and review of the literature. The INTACC. Intergruppo Nazionale Terpia Adiuvante Colon Carcinoma. Ann Oncol 1996; 7(4):412–415.PubMedCrossRefGoogle Scholar
  61. 61.
    Pirzada NA, Ali, II, Dafer RM. Fluorouracil-induced neurotoxicity. Ann Pharmacother 2000; 34(1):35–38.PubMedCrossRefGoogle Scholar
  62. 62.
    Choi SM, Lee SH, Yang YS et al. 5-fluorouracil-induced leukoencephalopathy in patients with breast cancer. J Korean Med Sci 2001; 16(3):328–334.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Fujikawa A, Tsuchiya K, Katase S et al. Diffusion-weighted MR imaging of Carmofur-induced leukoencephalopathy. Eur Radiol 2001; 11(12):2602–2606.PubMedCrossRefGoogle Scholar
  64. 64.
    Mignone RG, Weber ET. Potent inhibition of cell proliferation in the hippocampal dentate gyrus of mice by the chemotherapeutic drug thioTEPA. Brain Res 2006; 1111(1):26–29.PubMedCrossRefGoogle Scholar
  65. 65.
    Seigers R, Schagen SB, Beerling W et al. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res 2008; 186(2):168–175.PubMedCrossRefGoogle Scholar
  66. 66.
    Winocur G, Vardy J, Binns MA et al. The effects of the anti-cancer drugs, methotrexate and 5-fluorouracil, on cognitive function in mice. Pharmacol Biochem Behav 2006; 85(1):66–75.PubMedCrossRefGoogle Scholar
  67. 67.
    Hoffmeyer S, Burk O, von Richter O et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97(7):3473–3478.PubMedCrossRefGoogle Scholar
  68. 68.
    Muramatsu T, Johnson DR, Finch RA et al. Age-related differences in vincristine toxicity and biodistribution in wild-type and transporter-deficient mice. Oncol Res 2004; 14(7-8):331–343.PubMedGoogle Scholar
  69. 69.
    Jamroziak K, Balcerczak E, Cebula B et al. Multi-drug transporter MDR1 gene polymorphism and aprognosis in adult acute lymphoblastic leukemia. Pharmacol Rep 2005; 57(6):882–888.PubMedGoogle Scholar
  70. 70.
    Linnebank M, Pels H, Kleczar N et al. MTX-induced white matter changes are associated with polymorphisms of methionine metabolism. Neurology 2005; 64(5):912–913.PubMedCrossRefGoogle Scholar
  71. 71.
    Fishel ML, Vasko MR, Kelley MR. DNA repair in neurons: so if they don’t divide what’s to repair? Mutat Res 2007; 614(1–2):24–36.PubMedCrossRefGoogle Scholar
  72. 72.
    Kaya E, Keskin L, Aydogdu I et al. Oxidant/antioxidant parameters and their relationship with chemotherapy in Hodgkin’s lymphoma. J Int Med Res 2005; 33(6):687–692.PubMedCrossRefGoogle Scholar
  73. 73.
    Papageorgiou M, Stiakaki E, Dimitriou H et al. Cancer chemotherapy reduces plasma total antioxidant capacity in children with malignancies. Leuk Res 2005; 29(1):11–16.PubMedCrossRefGoogle Scholar
  74. 74.
    Kennedy DD, Ladas EJ, Rheingold SR et al. Antioxidant status decreases in children with acute lymphoblastic leukemia during the first six months of chemotherapy treatment. Pediatr Blood Cancer 2005; 44(4):378–385.PubMedCrossRefGoogle Scholar
  75. 75.
    Weijl NI, Hopman GD, Wipkink-Bakker A et al. Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. Ann Oncol 1998; 9(12):1331–1337.PubMedCrossRefGoogle Scholar
  76. 76.
    Conklin KA. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer 2000; 37(1):1–18.PubMedCrossRefGoogle Scholar
  77. 77.
    Gietema JA, Meinardi MT, Messerschmidt J et al. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer. Lancet 2000; 355(9209):1075–1076.PubMedCrossRefGoogle Scholar
  78. 78.
    Smith J, Ladi E, Mayer-Proschel M et al. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA 2000; 97(18):10032–10037.PubMedCrossRefGoogle Scholar
  79. 79.
    Schroder CP, Wisman GB, de Jong S et al. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br J Cancer 2001; 84(10):1348–1353.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Lahav M, Uziel O, Kestenbaum M et al. Nonmyeloablative conditioning does not prevent telomere shortening after allogeneic stem cell transplantation. Transplantation 2005; 80(7):969–976.PubMedCrossRefGoogle Scholar
  81. 81.
    Cheng A, Shin-ya K, Wan R et al. Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage. J Neurosci 2007; 27(14):3722–3733.PubMedCrossRefGoogle Scholar
  82. 82.
    Dietrich J, Norden AD, Wen PY. Emerging antiangiogenic treatments for gliomas—efficacy and safety issues. Curr Opin Neurol 2008; 21(6):736–744.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Jörg Dietrich
    • 1
  1. 1.Department of Neurology, MGH Cancer Center and Center for Regenerative MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations