Skip to main content

D. Ray Fulkerson

  • 1411 Accesses

Part of the International Series in Operations Research & Management Science book series (ISOR,volume 147)

Abstract

Ray Fulkerson’s seminal work in network flows, large-scale linear programming (LP), combinatorial optimization, and combinatorics has had an enormous influence on the practice of Operations Research (OR). His seminal book, Flows in Networks, co-written with Lester R. Ford, Jr., was instrumental in bringing network flow theory and algorithms to the domain of OR practice—in communications, transportation, supply systems—and in hastening the development of academic courses in networks, graph theory, and combinatorics. Much of his most influential work began with an application, a puzzle, or a specific computational obstacle. Pursuit of the underlying mathematical structures led Ray and his collaborators to broad and profound methodological innovations, such as cutting planes and column generation, and to the foundations of network flow theory and polyhedral combinatorics.

Keywords

  • Travel Salesman Problem
  • Column Generation
  • Multicommodity Flow
  • Linear Programming Duality
  • Subtour Elimination Constraint

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-6281-2_28
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4419-6281-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  • Ahuja R, Magnanti T, Orlin J (1993) Network flows: theory and applications. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Applegate D, Bixby R, Chvátal V, Cook W (2006) The Traveling salesman problem: a computational study. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Billera L, Lucas W (1978) Delbert Ray Fulkerson. Math Oper Res 1(4):298–310

    Google Scholar 

  • Bland R (1974) Complementary orthogonal subspaces of Rn and orientability of Matroids. Unpublished doctoral dissertation, Cornell University, Ithaca, NY

    Google Scholar 

  • Bland R (1977) New finite pivoting rules for the simplex method. Math Oper Res 12(3):103–107

    CrossRef  Google Scholar 

  • Bland R, Orlin J (2005) IFORS’ operational research hall of fame: Delbert Ray Fulkerson. Int Trans Oper Res 12(3):367–372

    CrossRef  Google Scholar 

  • Bruck R, Ryser H (1949) The nonexistence of certain finite projective planes. Can J Math 1:88–93

    CrossRef  Google Scholar 

  • Camion P (1968) Modules unimodulaires. J Comb Theory 4:301–362

    CrossRef  Google Scholar 

  • Chvátal V (1976) D. Ray Fulkerson’s contributions to operations research. Math Oper Res 1(4):311–320

    CrossRef  Google Scholar 

  • Dantzig G (1951) Application of the simplex method to a transportation problem. In: Koopmans TC (ed) Activity analysis of production and allocation: proceedings of a conference. Wiley, New York, NY, pp 359–373

    Google Scholar 

  • Dantzig G (1959) Optimum gas balance (unpublished report)

    Google Scholar 

  • Dantzig G, Ford L Jr, Fulkerson DR (1956) A primal-dual algorithm for linear programs. In: Kuhn H, Tucker AW (eds) Annals of mathematics study, vol 38. Princeton University Press, Princeton, NJ, pp 171–181

    Google Scholar 

  • Dantzig G, Fulkerson DR (1954) Minimizing the number of tankers to meet a fixed schedule. Nav Res Log Q 1(3):217–222

    CrossRef  Google Scholar 

  • Dantzig G, Fulkerson DR, Johnson S (1954) Solution of a large-scale traveling salesman problem. Oper Res 2(4):393–410

    CrossRef  Google Scholar 

  • Dantzig G, Fulkerson DR, Johnson S (1959) On a linear-programming, combinatorial approach to the travelling salesman problem. Oper Res 7(1):58–66

    CrossRef  Google Scholar 

  • Dantzig G, Wolfe P (1961) The decomposition algorithm for linear programming. Econometrica 29(3):767–778

    CrossRef  Google Scholar 

  • Dilworth R (1950) A decomposition theorem for partially ordered sets. Ann Math 51:161–166

    CrossRef  Google Scholar 

  • Edmonds J, Fulkerson DR (1970) Bottleneck extrema. J Comb Theory 8:299–306

    CrossRef  Google Scholar 

  • Fleming W (2009) Personal communication

    Google Scholar 

  • Folkman J, Fulkerson DR (1970) Flows in infinite graphs. J Comb Theory 8:30–44

    CrossRef  Google Scholar 

  • Ford L Jr, Fulkerson DR (1954) Maximal flow through a network. Research Memorandum RM-1400. The RAND Corporation, Santa Monica, CA

    Google Scholar 

  • Ford L Jr, Fulkerson DR (1956a) Maximal flow through a network. Can J Math 8:399–404

    CrossRef  Google Scholar 

  • Ford L Jr, Fulkerson DR (1956b) Solving the transportation problem. Manage Sci 3(1):24–32

    CrossRef  Google Scholar 

  • Ford L Jr, Fulkerson DR (1957) A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Can J Math 9:210–218

    CrossRef  Google Scholar 

  • Ford L Jr, Fulkerson DR (1958) A suggested computation for maximal multicommodity network flows. Manage Sci 5(1):97–101

    CrossRef  Google Scholar 

  • Ford L Jr, Fulkerson DR (1962) Flows in networks. Princeton University Press, Princeton, NJ. Reissued 2010, Princeton University Press

    Google Scholar 

  • Fulkerson DR (1959) Letter to Lester Ford

    Google Scholar 

  • Fulkerson DR (1961a) An out-of-kilter method for minimum cost flow problems. J Soc Ind Appl Math 9:18–27

    CrossRef  Google Scholar 

  • Fulkerson DR (1961b) A network flow computation for project cost curves. Manage Sci 7(2):167–178

    CrossRef  Google Scholar 

  • Fulkerson DR (1966) Flow networks and combinatorial operations research. Am Math Mon 73(2):115–138

    CrossRef  Google Scholar 

  • Fulkerson DR (1968) Networks, frames, blocking systems. In: Dantzig GB, Veinott AF Jr (eds) Mathematics of the decision sciences. American Mathematical Society, Providence, RI, pp 303–335

    Google Scholar 

  • Fulkerson DR (1971) Blocking and anti-blocking pairs of polyhedra. Math Progr 1(2):168–194

    CrossRef  Google Scholar 

  • Fulkerson DR (1972) In memoriam: Elbert Fulkerson, April 5, 1972. Unpublished

    Google Scholar 

  • Fulkerson DR, Harding G (1976) On edge-disjoint branchings. Networks 6(2):97–104

    CrossRef  Google Scholar 

  • Fulkerson DR, Harding G (1977) Maximizing the minimum source-sink path subject to a budget constraint. Math Program 13(1):116–118

    CrossRef  Google Scholar 

  • Fulkerson DR, Weinberger D (1975) Blocking pairs of polyhedra arising from network flows. J Comb Theory Ser B 18:265–283

    CrossRef  Google Scholar 

  • Gilmore P, Gomory R (1961) A linear programming approach to the cutting stock problem: part I. Oper Res 9(6):849–859

    CrossRef  Google Scholar 

  • Gilmore P, Gomory R (1963) A linear programming approach to the cutting stock problem: part I. Oper Res 11(6):863–887

    CrossRef  Google Scholar 

  • Harding G (1977) Some budgeted optimization problems and the edge-disjoint branchings problem. Unpublished doctoral dissertation, Cornell University, Ithaca, NY

    Google Scholar 

  • Harris T, Ross F (1955) Fundamentals of a method for evaluating rail net capacities. Research Memorandum RM-1573. The RAND Corporation, Santa Monica, CA

    Google Scholar 

  • Heller I (1953) On the problem of the shortest path between points. I. Abstract 664t, Bull Am Math Soc 59:551–551

    Google Scholar 

  • Hoffman A (1978) D. R. Fulkerson’s contributions to polyhedral combinatorics. Math Program Stud 8(1):17–23

    Google Scholar 

  • Hoffman A, Wolfe P (1985) History. In: Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley, New York, NY, pp 1–15

    Google Scholar 

  • Kelley J Jr (1961) The critical path planning and scheduling: mathematical basis. Oper Res 9(3):296–320

    CrossRef  Google Scholar 

  • Kuhn H (1955) On certain convex polyhedra. Abstract 779t, Bull Am Math Soc 61:557–558

    Google Scholar 

  • Kuhn H (1991) On the origin of the Hungarian method. In: Lenstra JK, Rinnooy Kan AHG, Schrijver A (eds) History of mathematical programming: a collection of personal reminiscences. CWI and North Holland, Amsterdam, pp 77–81

    Google Scholar 

  • Menger K (1927) Zur allgemeinen Kurventhoerie. Fundam Math 10:96–115

    Google Scholar 

  • Minty G (1966) On the axiomatic foundations of the theories of directed linear graphs, electrical networks, and network programming. J Math Mechan 15(3):485–520

    Google Scholar 

  • Nering E, Tucker A (1993) Linear programming and related problems. Academic, Boston, MA

    Google Scholar 

  • RAND Corporation (1948) http://www.rand.org/about/history/. Accessed 10 Apr 2008

  • Robacker J (1955) On network theory. Research Memorandum RM-1498. The RAND Corporation, Santa Monica, CA

    Google Scholar 

  • Robinson J (1949) On the Hamiltonian game (a traveling salesman problem). Research Memorandum RM-303. The RAND Corporation, Santa Monica, CA

    Google Scholar 

  • Rockafellar R (1969) The elementary vectors of a subspace of Rn. In: Bose RC, Dowling TA (eds) Combinatorial mathematics and its applications. University of North Carolina Press, New York, NY, pp 104–127

    Google Scholar 

  • Ryser H (1977) In memoriam. D. Ray Fulkerson, 1924–1976. J Comb Theory Ser B 23:1–2

    CrossRef  Google Scholar 

  • Tucker A (1976) Personal letter to L.J. Billera and W.H. Lucas

    Google Scholar 

  • Veinott A (ed) (1976) Math Oper Res 1(4)

    Google Scholar 

  • Weinberger D (1973) Investigations in the theory of blocking pairs of polyhedra. Unpublished doctoral dissertation, Cornell University, Ithaca, NY

    Google Scholar 

  • Williamson D (2002) The primal-dual method for approximation algorithms. Math Program B 91(3):447–478

    CrossRef  Google Scholar 

Download references

Acknowledgment

We are extremely grateful to several of Ray’s family members, friends, and admirers who assisted in providing information for this chapter, including: Michel Balinski, Len Berkovitz, Louis Billera, Wendell Fleming, Les Ford, Dick Fulkerson, Lloyd Shapley, David Shmoys, Alan Tucker, David Weinberger, Allen Ziebur, and, especially, Merle Fulkerson Guthrie. The nice presentation of Ray’s personal story in Billera and Lucas (1978) and the source material they gathered provided background material for this chapter. Some of the content here is from Bland and Orlin (2005).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bland, R.G., Orlin, J.B. (2011). D. Ray Fulkerson. In: Assad, A., Gass, S. (eds) Profiles in Operations Research. International Series in Operations Research & Management Science, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6281-2_28

Download citation