Skip to main content

Ecological Risk Assessment (ERA) of a Tanning Industry

  • Chapter
  • First Online:
Ecotoxicological Diagnosis in the Tanning Industry

Abstract

The complex nature of the pollutants (posing risks and hazards within the working tannery environment) demonstrated in this study and explained in the previous chapters, led to the development of an ecological risk assessment (ERA) associated with the tanning industry. This approach acts both as a diagnostic and remediative tool pertinent to the tanning industry. This chapter attempted to capture the impact of the tanning industry in a much more holistic manner and encompassing experiences learnt in the earlier chapters. This resulted to the development of an ecological risk assessment (ERA) to provide possible mitigating factors geared towards the tanning industry. Ecological risk assessment utilised various techniques to evaluate the probability that adverse ecological effects will occur as a result of exposure to one or more stressors. Ecological risk assessment determined and documented actual or potential effects and impacts of contaminants on ecological receptors and habitats as a basis for evaluating remedial alternatives. Therefore the main aim of this chapter was to integrate principal issues such as identifying stressors/hazards, application of biological (Bioassays) and chemical assays (to determine heavy metals, COD, BOD, and Total Phenols).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams SM (2003) Establishing causality between environmental stressors and effects on aquatic ecosystems. Hum Ecol Risk Assess 1: 17–35.

    Article  Google Scholar 

  • Anonymous (2001b) Freshwater Ecosystems, Department of Natural Resources and Environment (NRE), www.nre.vic.gov.au .

  • Anonymous (2003) Unione Nazionale Industria Conciaria. Environmental report 2003, www.unic.it.

  • Aloy M, Folachier A, Vulliermet B (1976) Tannery and pollution, Centre Technique Du Cuir, Lyon, France.

    Google Scholar 

  • Artiola JF (1996) Waste disposal, chapter 10, pp 142. In: Pepper, L.I., Gerba, P.C., Brusseau, M.L (eds.) Pollution Science, Academic Press (Elsevier Science, USA), San Diego, California, USA.

    Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1986) Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl Microbiol Biotechnol 25: 62–67.

    Article  CAS  Google Scholar 

  • Balakrishnan PA, Arunagiri A, Rao PG (2002) Ozone generation by silent electric discharge and its application in tertiary treatment of tannery effluent. Appl Microbiol Biotechnol 56: 77–86.

    CAS  Google Scholar 

  • Balusubramanian S, Pugalenthi V, (2000) A Comparative study of the determination of sulphide in tannery wastewater by ion selective electrode (ISE) and Iodimetry. Water Res 34: 4201–4206.

    Article  Google Scholar 

  • Beaublen S, Niriagu J, Blower D, Lawson G (1994) Chromium speciation and distribution in the Great Lakes. Environ Sci Tech 28: 730–738.

    Article  Google Scholar 

  • Bryant SE, Schultz TW (1994) Toxicological assessment of biotransformation products of pentachlorophenols: Tetrahymena population growth impairment. Arch Environ Contam Toxicol 26: 299–303.

    Article  CAS  Google Scholar 

  • Boyd EM, Meharg AA, Wright J, Killham K (1998) Toxicity of chlorobenzene to a lux-marked terrestrial bacterium, Pseudomonas flourescens. Environ Toxicol Chem 16: 849–856.

    Google Scholar 

  • Cassano A, Molinari A, Romano M, Drioli E (2001) Treatment of aqueous effluents of the leather Industry by membrane processes, a review. J Membr Sci 181: 111–126.

    Article  CAS  Google Scholar 

  • Cassin MH, Lammerding AM, EC Ross W, McColl RS (1998) Quantitative risk assessment for Escherichia coli O157:H7 in ground beef hamburgers. International. J Food Microbiol 41: 21–44.

    Google Scholar 

  • Chaaban MA (1996) Source reduction hazardous waste. In: Proceedings of the International Conference on the role of engineering towards better environment. Alexandria, Egypt, December 17–20.

    Google Scholar 

  • Chaaban MA (2001) Hazardous waste source reduction in materials and processing technologies. J Materials Processing Technol 119: 336–343.

    Article  CAS  Google Scholar 

  • Chaudri M, McGrath SP, Knight BP, Johnson DL, Jones KC (1996) Toxicity of organic compounds to the indigenous population of Rhizobium leguminosarum biovar trifolii in soil. Soil Biol Biochem 28: 1483–1487.

    Article  CAS  Google Scholar 

  • Codex Alimentarius Commission CAC (1998) Principles and guidelines for the conduct of microbiological risk assessment (Alinorm 99/13A, Appendix II).

    Google Scholar 

  • Dorman CD, Brenneman KA, Melanie FS, Miller KL, James AR, Marshall MW, Foster PMD (2000) Fertility and developmental neurotoxicity effects of inhaled hydrogen sulphide in Sprague-Dawley rats. Neurotoxicol Teratol 22: 71–84.

    Article  CAS  Google Scholar 

  • Duffus JH (1993) Glossary for chemists of terms used in toxicology. Pure Appl Chem 65: 2003–2122.

    Article  CAS  Google Scholar 

  • Eary LE, Rai D (1988) Chromium removal from aqueous wastes by reduction with ferrous ion. Environ Sci Tech 22: 972–977.

    Article  CAS  Google Scholar 

  • EWOFFT (1992) Summary and Recommendation of the European Workshop on Freshwater Field Tests (EWOFFT), Crossland NO, Heimbach F, Hill IR, Boudou A, Leeuwangh P, Matthiessen P, Persoone G (eds) Potsdam, Germany, pp. 2–12.

    Google Scholar 

  • Fendorf SE, RJ Zasoski (1992) Chromium (III) oxidation by δ−MnO2: 1. Characterization. Environ Sci Tech 26: 79–85.

    Article  CAS  Google Scholar 

  • Florence MT (1989) Trace element speciation in biological systems, pp. 319. In: Batley GE (ed) trace element speciation: Analytical Methods and Problems, CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Gerba CP (1996) Risk Assessment chapter 22 pp. 346–355. In: Pepper LI, Gerba PC, Brusseau (eds), Pollution Science, Academic Press (Elsevier Science, USA), San Diego, California, USA.

    Google Scholar 

  • Germann HP (1999) Science and technology for leather into the next millennium. Tata McGraw-Hill, New Delhi. pp. 283.

    Google Scholar 

  • Giggleman MA, Fitzpatrick LC, Goven AJ, Venables BJ (1998) Effects of pentachlorophenol on survival of earthworms (Lumbricus terrestris) and phagocytosis by their immunoactive coelomocytes. Environ Sci Tech 17: 2391–2394.

    Google Scholar 

  • Goel R, Minto T, Satoh H, Matsuo T (1998) Enzyme activity under anaerobic and aerobic conditions under activated sludge sequencing batch reactor. Water Res 32 (7): 2081 – 2088.

    Article  CAS  Google Scholar 

  • Hansen PD, Schwanz-Pfitzner I, und Tillmanns GM (1989) Ein Fischzellkulturtest als Ergänzungs- oder Ersatzmethode zum Fischtest. Bundesgesundheitsblatt 32(8): 343–346.

    Google Scholar 

  • Heitzer A, Appegate B, Kehrmeyer S, Pinkart H, Webb OF, Phelps TJ, White DC, Sayler GS (1998) Physiological considerations of environmental applications of lux reporter fusions. J Microbiol Meth 33: 45–57.

    Article  CAS  Google Scholar 

  • Hewitt LM, Dubé MG, Culp JM, MacLatchy DB, Munkittrrick KR (2003) A proposed framework for investigation of cause for environmental effects monitoring, Hum Ecol Risk Assess 9 (1): 195–211.

    Article  CAS  Google Scholar 

  • Hongwei Y, Zhanpeng J, Shaoqi S, Tang WZ (2002) INT-dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds. Ecotoxicol Environ Saf 53: 416 – 421.

    Article  Google Scholar 

  • Hulzebos EM, Adema DMM, Dirven-van Breemen EM, Henzen L, van Dis WA, Herbold HA, Hoekstra JA, Baerselman R, van Gestel CAM (1993) Phytotoxicity studies with Lactuca sativa in soil and nutrient solutions. Environ Toxicol Chem 12: 1079–1094.

    CAS  Google Scholar 

  • Jensen J (1996) Chlorophenols in the terrestrial environment. Rev. Environ. Contam. Toxicol. 146: 25–51.

    Article  CAS  Google Scholar 

  • Johnson CA (1990) A rapid technique for the seperation and preconcentration of Cr(VI) and Cr(III) in natural waters. Anal Chim Acta 238: 273–278.

    Article  CAS  Google Scholar 

  • Khwaja AR (1998) Studies on pollution abatement of wastes from leather Industries, PhD thesis, University of Roorkee, India.

    Google Scholar 

  • Killham K, Staddon WJ (2002) Bioindicators and Sensors of Soil Health and the Application of Geostatistics pp 397–406. In: Burns GR, Dick RP (eds) Enzymes in the Environments; Activity, Ecology and Applications Marcel Dekker, New York.

    Google Scholar 

  • Krull IS, Bushee D, Savage RN, Scheleicher RG, Smith SB Jr (1982) Anal Lett 15: 267.

    Article  CAS  Google Scholar 

  • Le Bihan Y, Lessard P (1998) Influence of operational variables on enzymatic tests applied to monitor the microbial biomass activity of a biofilter. Water Sci Tech 37 (4/5): 199 – 202.

    Google Scholar 

  • McGrath SP, Knight B, Killham K, Preston S, Paton GI (1999) Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux-based biosensor. Environ Toxicol Chem 18: 659–663.

    CAS  Google Scholar 

  • Murti KCR (1989) Health implications of hazardous wastes disposal, pp.191–196. In: Maltezou SP, Biswas AK, Sutter H (eds), Hazardous Waste Management, Tycooly, London.

    Google Scholar 

  • Mwinyihija M, Strachan NJC, Meharg A, Killham K (2005b) Ecological risk assessment of the Kenyan tanning industry. J Am Leather Chem Assoc 100: 380–395.

    CAS  Google Scholar 

  • Mwinyihija M, Strachan NJC, Dawson J, Meharg A, Killham K (2006) An ecotoxicological approach to assessing the impact of tanning industry effluent on river health. Arch Environ Contam Toxicol 50: 316–324.

    Article  CAS  Google Scholar 

  • Nybroe O, Jorgensen PE, Henze M (1992) Enzyme activities in wastewater and activated sludge. Water Res 26 (5): 199–202.

    Article  Google Scholar 

  • Pantsar-Kallio M, Reinikainen S, Oksanen M (2001) Interactions of soil components and their effects on speciation of chromium in soils. Anal Chim Acta 439: 9–17.

    Article  CAS  Google Scholar 

  • Park J, Dec J, Kim J, Bollag J (1999) Effect of humic constituents in the transformation of chlorinated phenols and anilines in the presence of oxidoreductase enzymes or birnessite. Environ Sci Tech 33: 2028–2034.

    Article  CAS  Google Scholar 

  • Peila U (1981) Impianto di depurazione acque reflue da trattamento di concia delle pelli, AES 3 (10): 61.

    CAS  Google Scholar 

  • Pezzo DL, Simone DG, Tomaselli M, Ummarino G (1980) Proposta di un ‘modello’ schematico per impianti di depurazione di acque di scarico conciarie, Cuoio, Pelli. Mat. Concianti 56 (1): 17.

    Google Scholar 

  • Ramasami T, Prasad BGS (1991) Environmental aspects of leather processing. Proceedings of the LEXPO–XV, Calcutta, India, pp 43.

    Google Scholar 

  • Ritchie JM, Cresser M,.Cotter-Howells (2001) Toxicological response of a bioluminescence microbial assay to Zn, Pb and Cu in artificial soil solution: relationship with total metal concentrations and free ion activities. Environ Pollut 144: 129–136.

    Article  Google Scholar 

  • Sinclair MG (1999) Soil toxicity assessment of 2,4-DCP using lux microbial biosensors. PhD thesis, University of Aberdeen, U.K.

    Google Scholar 

  • Smith S, Furay VJ, Layiwola PJ, Menezes-Filho JA (1994) Evaluation of the toxicity and quantitative structure-activity relationship (QSAR) of chlorophenols to the copepodid stage of a marine copepod (Tisbe battagliai) and two species of benthic flatfish, the flounder (Platichthys flesus) and sole (Solea solea). Chemosphere 28: 825–836.

    Article  CAS  Google Scholar 

  • Sousa S, Duffy C, Weitz H., Glover AL, Bar E, Henkler R, Killham K (1998) Use of a lux-modified bacterial biosensor to identify constraints to bioremediation of BTEX-contaminated sites. Environ Toxicol Chem 17: 1039–1045.

    CAS  Google Scholar 

  • Stuhlfauth T (1995) Ecotoxicological monitoring of industrial effluents, chapter 14 pp. 187. In: Richardson M (ed), Environmental Toxicology Assessment, Taylor & Francis, Hertfordshire, United Kingdom.

    Google Scholar 

  • Suter GW (1993) Ecological Risk Assessment. Lewis Publishers, Boca Raton, Florida, USA.

    Google Scholar 

  • Scholz N, Müller FJ (1992) The riverine biocoenosis model (aquatic stair case model); A test system for determining the ecotoxicity and biodegradation under reality-approximate riverine conditions. Chemosphere 25: 563–579.

    Article  CAS  Google Scholar 

  • Thanikaivelan P, Rao RJ, Nair BU, Ramasami T (2003) Approach towards zero discharge tanning: role of concentration on the development of eco-friendly liming-reliming processes. J Clean Prod 11: 79–90.

    Article  Google Scholar 

  • UK Habitat directives (2004) 3rd revision of habitats directives and regulations guidance. www.ennvironment-agency.gov.uk.

  • UNEP IE/PAC (1994) Tanneries and the Environment – A Technical Guide, Technical Report (2nd Print) Series No 4, ISBN 92 807 1276 4.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1991) Methods for aquatic toxicity identification evaluations: Phase I toxicity characterisation procedures. 2nd Edition EPA/600/6-91/003. Environmental Research Laboratory, Duluth, MN, USA.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1993a) Methods for aquatic toxicity identification evaluations: Phase II toxicity characterisation procedures. 2nd Edition EPA/600/R-92/080. Environmental Research Laboratory, Duluth, MN, USA.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1993b) Methods for aquatic toxicity identification evaluations: Phase III toxicity characterisation procedures. 2nd Edition EPA/600/R-92/081. Environmental Research Laboratory, Duluth, MN, USA.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1997) Marine toxicity identification evaluations (TIE): Phase I guidance document. EPA/600R92054. Environmental Research Laboratory, Duluth, MN, USA.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1998). Guidelines for Ecological Risk Assessment. EPA/630/R-95002F. Office of Water, Washington, DC, USA.

    Google Scholar 

  • van Beelen P, Fleuren-Kemila AK (1997) Influence of the pH on the toxic effect of zinc, cadmium, and pentachlorophenol on pure cultures of soil microorganism. Environ Toxicol Chem 16: 146-153.

    Article  Google Scholar 

  • van Leeuwen HP (1999) Metal speciation dynamics and bioavailability: inert and labile complexes. Environ Sci Technol 33: 3734–3748.

    Google Scholar 

  • Vose D (2000) Risk Analysis a Quantitative Guide, 2nd edn. Wiley, United Kingdom.

    Google Scholar 

  • Vosey PA, Brown M (2000) Microbiological risk assessment: a new approach to food safety control. Int J Food Microbiol 58: 173–179.

    Article  Google Scholar 

  • Wierenga PJ (1996) Physical processes affecting contaminant fate and transport in soil and water, chapter 5, pp. 53–54. In: Pepper LI, Gerba PC, Brusseau, ML (Eds.) Pollution Science, Academic Press (Elsevier Science, USA), San Diego, California, USA.

    Google Scholar 

  • Woodman JN, Cowling EB (1987) Airborne chemicals and forest health. Environ Sci 21: 120–126.

    Article  CAS  Google Scholar 

  • Wiemann M, Schenk H, Hegemann W (1998) Anaerobic treatment of tannery wastewater with simultaneous sulphide elimination. Water Res 32(3): 774–780.

    Article  CAS  Google Scholar 

  • World Health Organisation (WHO) (1978) Principles and Methods of Evaluating the Toxicity of Chemicals, Part 1(1978). International Programme on Chemical Safety.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mwinyikione Mwinyihija PhD, FCIWEM, HSC, CSci., CBiol., CEnv. .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Mwinyihija, M. (2010). Ecological Risk Assessment (ERA) of a Tanning Industry. In: Ecotoxicological Diagnosis in the Tanning Industry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6266-9_5

Download citation

Publish with us

Policies and ethics