Advertisement

A Statistical Model for the Quark Structure of the Nucleon

  • V. Devanathan
  • S. Karthiyayini
Chapter

Summary

The deep inelastic scattering experiments reveal that the nucleon is a composite object consisting of quarks and gluons. Treating them as Fermi and Bose gases, statistical distribution functions are used to describe their momentum distributions in the rest frame. When transformed to the infinite momentum frame, they yield quark and gluon distribution functions. A thermodynamical bag model is proposed to obtain realistic distribution functions that yield correctly the nucleon structure functions. By including the spin degree of freedom in the Fermi statistical distribution functions, the quark spin distribution functions and the polarized nucleon structure functions are obtained.

Key words and phrases

Fermi and Bose statistical distribution functions Deep inelasic scattering Quarks and gluons Quark distribution functions Nucleon structure functions 

Notes

Acknowledgements

This article is dedicated to the memory of Prof. Alladi Ramakrishnan who has inspired us to take to research and teaching. He can be truly called the Father of Theoretical Physics in South India and he has been a source of inspiration to successive generations of students in this part of the country. Much of the work reported in this review has been done in collaboration with K. Ganesamurthy and J. S. McCarthy. The authors thank Professor Krishnaswami Alladi for inviting us to contribute to this memorial volume.

References

  1. 1.
    D. K. Dukes and J. F. Owens, Phys. Rev. D30, 49 (1984)Google Scholar
  2. 2.
    J. F. Owens, Phys. Lett. B266, 126 (1991)Google Scholar
  3. 3.
    V. Berger and R. J. N. Phillips, Nuclear Phys. B73, 269 (1974)Google Scholar
  4. 4.
    A. D. Martin, R. Roberts and W. J. Stirling, Phys. Rev. D37, 1161; Phys. Lett. B206, 327 (1989); Mod. Phys. Lett. A4, 1135 (1989)Google Scholar
  5. 5.
    M. Gluck, E. Reya and A. Vogt, Z. Phys. C48, 471 (1990); C53, 127 (1992)Google Scholar
  6. 6.
    A. D. Martin, W. J. Stirling and R. G. Roberts, Phys. Lett. B306, 145 (1993); Phys. Rev. D47, 867 (1993); Phys. Rev. D50, 6734 (1994)Google Scholar
  7. 7.
    M. Gluck, E. Reya and A. Vogt, Phys. Lett. B306, 391 (1993)Google Scholar
  8. 8.
    J. Botts et al., Phys. Lett. B304, 159 (1993)Google Scholar
  9. 9.
    CTEQ Collaboration, H. L. Lai et al., Phys. Rev. D51, 4763 (1995)Google Scholar
  10. 10.
    J. Cleymans and R. L. Thews, Z. Phys. C37, 315 (1988)Google Scholar
  11. 11.
    E. Mac and E. Ugaz, Z. Phys., C43, 655 (1989)Google Scholar
  12. 12.
    R. P. Bickerstaff and J. T. Londergan, Phys. Rev. C42, 3621 (1990)Google Scholar
  13. 13.
    R. S. Bhalerao, Phys. Lett. B380, 1 (1996)Google Scholar
  14. 14.
    C. Bourrely, F. Buccella and J. Soffer, Eur. Phys. J. C23, 487 (2002); Mod. Phys. Lett. A18, 771 (2003); Eur. Phys. J. C41, 327 (2005); Mod. Phys. Lett. A21, 143 (2006); Phys. Lett. B 648, 39 (2007)Google Scholar
  15. 15.
    V. Devanathan, S. Karthiyayini and K. Ganesamurthy, Mod. Phys. Lett. A9, 3455 (1994)Google Scholar
  16. 16.
    V. Devanathan, S. Karthiyayini and K. Ganesamurthy, Parton Distributions and Nucleon Structure Functions, in Perspectives in Theoretical Nuclear Physics (p.119), Eds. K. Srinivasa Rao and L. Satpathy, Wiley Eastern, New York (1994)Google Scholar
  17. 17.
    V. Devanathan, “Deep inelastic scattering and nucleon structure functions”, in New Perspectives in Classical and Quantum Physics, Eds. P.P. Delsanto and A. W. Sáenz, Gordon and Breach, London (1995)Google Scholar
  18. 18.
    V. Devanathan, Parton spin distribution functions, in Selected Topics in Mathematical Physics: Professor R. Vasudevan Memorial Volume, Eds. R. Sridhar, K. Srinivasa Rao and V. Lakshminarayanan, Allied Publishers Ltd. (1995)Google Scholar
  19. 19.
    V. Devanathan and J. S. McCarthy, Mod. Phys. Lett. A11, 147 (1996)Google Scholar
  20. 20.
    V. Devanathan, Ch. 14, Nuclear Physics, Narosa Publishing House, New Delhi, India and Alpha Science International, Oxford, UK. (2006)Google Scholar
  21. 21.
    M. Rajasekaran, K. Ganesamurthy and V. Devanathan, Mod. Phys. Lett. A5, 473 (1990)Google Scholar
  22. 22.
    M. Rajasekaran, N. Meenakumari and V. Devanathan, Mod. Phys. Lett. A5, 2537 (1990)Google Scholar
  23. 23.
    G. Miller et al., Phys. Rev. D5, 528 (1972)Google Scholar
  24. 24.
    M. Derric et al., Z. Phys. C65, 379 (1995)Google Scholar
  25. 25.
    T. Ahmed et al. Nuclear Phys. B439, 471 (1995)Google Scholar
  26. 26.
    F. E. Close, An Introduction to Quarks and Partons, Academic Press, New York (1978)Google Scholar
  27. 27.
    SLAC, The E143 Collaboration, K. Abe et al., Phys. Rev. Lett. 74, 346 (1995); 75, 25 (1995); Phys. Rev. D58, 25 (1996); 112003 (1998)Google Scholar
  28. 28.
    SLAC, The E142 Collaboration, P. L. Anthony et al., Phys. Rev. Lett. 71, 959 (1996); Phys. Rev. D54, 6620 (1996)Google Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  1. 1.Tamil Nadu Academy of Sciences, Department of Nuclear PhysicsUniversity of MadrasChennaiIndia
  2. 2.Physics DivisionBITS-PilaniDubaiUAE

Personalised recommendations