Advertisement

Chance in Living Systems

  • Alain Pavé
Chapter

Abstract

Randomness is an integral part of certain biological and ecological processes, and has been for nearly all of the 4 billion years that living systems have been evolving. Indeed, as we will see, the processes that, from the gene to the ecosystem, bring about randomness produce biological diversity. This is “chance as creator” (Lestienne, 1993) and it is also, perhaps, thanks to this diversification that Life has been able to continue on Earth, despite the risks it runs, as proven by the catastrophes that have been sprinkled throughout the history of our planet. We must return here to Monod’s brilliant discussion on Chance and Necessity in the living world. The fundamental question is to know whether chance is necessary. And, if so, then the question arises: how is the process that brings it about selected to produce the diversity that, quite simply, permits Life to go on in an environment that is itself uncertain?

Keywords

Biological Diversity Sexual Reproduction Living System Competitive Exclusion Neutral Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. André J.-C., Mégie G., Schmidt-Lainé C., 2003, Échelles et changements d’échelles, problématiques et outils. In Caseau P. (Ed), « Études sur l’environnement: du territoire au continent ». RST, Académie des sciences, Tech&Doc, Paris, 167–199.Google Scholar
  2. Barbault R., Pavé A., 2003, Écologie des territoires et territoires de l’écologie. In Caseau P. (Ed), Études sur l’environnement: du territoire au continent. RST, Académie des sciences, Tech&Doc, Paris, 1–49.Google Scholar
  3. Belovsky G.E., Mellison C., Larson C., Van Zandt P.A., 1999, Experimental studies of extinction dynamics. Science, 286, 1175–1177.PubMedCrossRefGoogle Scholar
  4. Bertrand D., Gascuel O., 2005, Topological rearrangements and local search method for tandem duplication trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2, 1, 1–13.CrossRefGoogle Scholar
  5. Bonhomme F., 2003, Combien de temps faut-il pour faire une espèce? In Michaud Y. (Ed.), «Qu’est-ce que la diversité de la vie». Odile Jacob, Paris, 408p.Google Scholar
  6. Chaitin G., 2006, Les limites de la raison mathématique. Pour la Science, 342, 70–76.Google Scholar
  7. Chave J., Alonso D., Etienne R.S., 2006, Comparing models of species abundance. Nature, 441, E1.PubMedCrossRefGoogle Scholar
  8. Clark J.S., MacLachlan J.S., 2003, Stability of forest biodiversity. Nature, 423, 636–638.Google Scholar
  9. Cornette J.L., Lieberman B.S., 2004, Random walks in the history of life. PNAS, 101, 187–191.PubMedCrossRefGoogle Scholar
  10. Crowley T.J., North G.R., 1996, Paleoclimatology. Oxford University Press, Oxford monographs on geology and geophysics, Oxford, 349p.Google Scholar
  11. Delahaye J.P., 1999, Information, complexité et hasard. Hermès, Paris.Google Scholar
  12. Delahaye J.P., 2004, Les dés pipés du cerveau. Pour la Science, 326, 144–149.Google Scholar
  13. Dessart H., Picard N., Pélissier P., Collinet-Vautier F., 2004, Spatial patterns of the most abundant tree species. In «Ecology and Management of a Neotropical Rainforest – Lessons drawn from Paracou, a long-term experimental research site in French Guiana». Elsevier, Paris, 177–186.Google Scholar
  14. Driver P.M., Humphries D.A., 1988, Protean Behavior: The Biology of Unpredictability. Oxford University Press, Oxford.Google Scholar
  15. Ferrière R., Cazelles B., 1999, Universal power laws govern intermittent rarity in communities of interacting species. Ecology, 80(5), 1505–1521.CrossRefGoogle Scholar
  16. Furuichi N., 2002, Dynamics between a predator and a prey switching two kinds of escape motions. Journal of Theoretical Biology, 217, 159–166.PubMedCrossRefGoogle Scholar
  17. Ghose K., Horiuchi T.K., Krishnaprasad P.S., 1995, Echolocating bats use a nearly time-optimal strategy to intercept prey. Proceedings of Biological Science, 261, 233–238.CrossRefGoogle Scholar
  18. Gould S.J., 1977, Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA.Google Scholar
  19. Hubbell S.P., 2001, The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
  20. Jacob F., 1981, Le jeu des possibles. Essai sur la diversité du vivant. Fayard, Paris.Google Scholar
  21. Jiang Y.L., Rigolet M., Bourchis D., Nigon F., Bokesoy I., Fryns J.P., Hulten M., Jonveaux P., Maraschio P., Megarbane A. et al., 2005, DNMT3B mutations and DNA methylation defect define two types of ICF syndrome. Human Mutation, 25(1), 56–63.PubMedCrossRefGoogle Scholar
  22. Kimura M., 1983, The Neutral Theory of Molecular Evolution. Cambridge University Press, New York, NY.CrossRefGoogle Scholar
  23. Kirchner J.W., Weil A., 2005, Fossils make waves. Nature, 434, 147–148.PubMedCrossRefGoogle Scholar
  24. Kupiec J.J., 2006, L’expression aléatoire des gènes. Pour la Science, 342, 78–83.Google Scholar
  25. Kupiec J.J., 2009, The Origin of Individual. Word Scientific, London.CrossRefGoogle Scholar
  26. Kupiec J.J., Sonigo P., 2000, Ni Dieu, ni gène. Seuil, Paris.Google Scholar
  27. Lestienne R., 1993, Le hasard créateur. La Découverte, Paris.Google Scholar
  28. Letellier C., 2006, Le chaos dans la nature. Vuibert, Paris.Google Scholar
  29. Maamar H., Raj A., Dubnau D., 2007, Noise in gene Expression Determines cell fate in Bacillus subtilis. Science, 317, 526–529.Google Scholar
  30. May R.M., 1976, Simple mathematical model with very complicated dynamics. Nature, 261, 459–467.PubMedCrossRefGoogle Scholar
  31. Mendel G., 1866, Versuche über Pflanzen Hybriden. Im Verlag des Vereines, Brünn, 47p.Google Scholar
  32. Michaud Y. (Ed.), 2003, Qu’est-ce que la diversité de la vie. Université de tous les savoirs. Odile Jacob, Paris.Google Scholar
  33. Michod R.E., 2000, Darwinian Dynamics. Princeton Paperbacks, Princeton, NJ.Google Scholar
  34. Ohta T., Gillespie, J.H., 1996, Development of neutral and nearly neutral theories. Theoretical Population Biology, 49, 128–142.PubMedCrossRefGoogle Scholar
  35. Pavé A., 1994, Modélisation en biologie et en écologie. Aléas, Lyon.Google Scholar
  36. Pavé A., Schmidt-Lainé C., 2003, Integrative biology: modelling and simulation of the complexity of natural systems. Biology International, 44, 13–24.Google Scholar
  37. Pavé A., Hervé J.C., Schmidt-Lainé Cl., 2002, Mass extinctions, biodiversity explosions and ecological niches. C. R. Biologies, 325, 755–765.PubMedCrossRefGoogle Scholar
  38. Pennisi E., 2008, Are epigenetics ready for big science? Science, 319, 1177.PubMedCrossRefGoogle Scholar
  39. Pollard K.S., Salama S., Lambert L., Lambot M.A., Coppens S., Pedersen J.S., Katzman S., King B., Onodera C., Siepel A. et al., 2006, An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443, 167–172.PubMedCrossRefGoogle Scholar
  40. Rassoulzadegan, M., Grandjean V., Gounon P., Vincent S., Gillot I., Cuzin F., 2006, RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature, 441, 469–474.PubMedCrossRefGoogle Scholar
  41. Ridley M. (Ed.), 2004, Evolution. 2nd Edition, Oxford University Press, Oxford.Google Scholar
  42. Rohde R.A., Muller R.A., 2005, Cycles in fossil diversity. Nature, 434, 208–210.PubMedCrossRefGoogle Scholar
  43. Rothman D.H., 2001, Global biodiversity and the ancient carbon cycle. PNAS, 98(8), 4305–4310.PubMedCrossRefGoogle Scholar
  44. Ruelle D., 1991, Hasard et chaos. Odile Jacob, Paris.Google Scholar
  45. Thivent V., 2006, Profilées pour germer. La Recherche, 396, 66–73.Google Scholar
  46. Van Valen L.M., 1973, A new evolutionary law. Evolutionary Theory, 1, 1–30.Google Scholar
  47. West, G.B., Brown J.H., Enquist B.J., 1999, A general model for the structure and allometry of plant vascular systems. Nature, 400, 664–667.CrossRefGoogle Scholar
  48. Whithfield J., 2002, Neutrality versus the niche. Nature, 417, 481.Google Scholar
  49. Wiener N., 1947, Cybernetics or Control and Communication in the Animal and the Machine. MIT Press, Cambridge, MA. (Many editions has been published since this first issue).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of Lyon and CNRSLyonFrance

Personalised recommendations