Advertisement

Questioning Chance

  • Alain Pavé
Chapter

Abstract

When we look at biology and ecology, it is surprising to note the role chance plays – often in a subtle alliance with some extremely solid determinisms – in many vital phenomena. The oft-suspected presence of chaotic or intermittent systems, sometimes equated with chance, is also a surprise. Certainly, a no doubt naive viewpoint would lead us to suppose that we need to banish chance and all that is erratic and chaotic if we want things to function properly, the way we try to do in technological systems.

Keywords

Chaotic System Living Thing Continental Drift Deterministic Problem Numerical Analyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alroy J., Aberhan M., Bottjer D.J., Foote M., Fürsich F.T., Harries P.J., Hendy A.J.W., Holland S.M., Ivany L.C., Kiessling W. et al., 2008, Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97–100.PubMedCrossRefGoogle Scholar
  2. Benton M.J., 1995, Diversification and extinction in the history of life. Science, 268, 52–58.PubMedCrossRefGoogle Scholar
  3. Chassé J.L.,Debouzie D., 1974, Utilisation des tests de Kiveliovtch et Vialar dans l’étude de quelques générateurs de nombres pseudo-aléatoires. Revue de Statistique appliquée, XXII(3), 83–90.Google Scholar
  4. Courtillot V., Gaudemer Y., 1996, Effects of mass extinctions on biodiversity. Nature, 381, 146–148.CrossRefGoogle Scholar
  5. Gause G.J., 1935, Vérifications expérimentales de la théorie mathématique de la lutte pour la vie. Herman, Paris.Google Scholar
  6. Hallam A., Wignall P.B., 1997, Mass Extinctions and Their Aftermath. Oxford University Press, Oxford.Google Scholar
  7. Kostitzin V.A., 1937, Biologie mathématique. Armand Colin, Paris.Google Scholar
  8. Lebreton J.-D., 1981, Contribution à la dynamique des populations d'oiseaux. Modèles mathématiques en temps discret. Thèse d'État de docteur es Sciences, Lyon.Google Scholar
  9. Leslie P.H., 1945, On the use of matrices in population mathematics. Biometrika, 33, 183–212.PubMedCrossRefGoogle Scholar
  10. Pavé A., 1979, Introduction aux modèles morphologiques et morphogénétiques dérivés de la théorie des langages. In Legay J.M., Tomassone R. (Ed.), Biométrie et biologie cellulaire. Société Française de Biométrie, Paris, 47–60.Google Scholar
  11. Pavé A., 1994, Modélisation en biologie et en écologie. Aléas, Lyon.Google Scholar
  12. Pavé A., Hervé J.C., Schmidt-Lainé Cl., 2002, Mass extinctions, biodiversity explosions and ecological niches. C. R. Biologies, 325, 755–765.PubMedCrossRefGoogle Scholar
  13. Rittaud B., 2004, Fabriquer le hasard. L’ordinateur à rude épreuve. La Recherche, 381, 28–33.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of Lyon and CNRSLyonFrance

Personalised recommendations