Advertisement

Elliptic Curves and Iwasawa’s µ = 0 Conjecture

Chapter
Part of the Developments in Mathematics book series (DEVM, volume 18)

Summary

The µ-invariant is a fundamental invariant in Iwasawa theory and a long-standing conjecture of Iwasawa asserts that it is zero for number fields. This can be viewed as a statement on an arithmetic Iwasawa module associated to the trivial motive. In this chapter, we discuss what the analogous conjecture should be for elliptic curves.

Keywords

Prime Ideal Elliptic Curve Elliptic Curf Galois Group Galois Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bourbaki, Elements of Mathematics, Commutative Algebra, Chaps. 1–7, Springer, Berlin (1989)Google Scholar
  2. 2.
    J. Coates, T. Fukaya, K. Kato, R. Sujatha, O. Venjakob, TheGL 2 main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes tudes Sci. 101 (2005), 163–208Google Scholar
  3. 3.
    J. Coates, R. Sujatha, Fine Selmer groups of elliptic curves over p-adic Lie extensions, Math. Ann. 331 (2005), 809–839Google Scholar
  4. 4.
    J. Coates, R. Sujatha, -, On the M H (G)-conjecture for elliptic curves (in preparation)Google Scholar
  5. 5.
    B. Ferrero, L. Washington, The Iwasawa invariant μ p vanishes for abelian number fields, Ann. Math. 109 (1979), 377–395Google Scholar
  6. 6.
    Gillard, Transformation de Mellin-Leopoldt des fonctions elliptiques, J. Number Theory 25 (1987), 379–393Google Scholar
  7. 7.
    R. Greenberg, Iwasawa Theory, Projective Modules, and Modular Representations, Mem. AMS (in press)Google Scholar
  8. 8.
    K. Iwasawa, On the theory of cyclotomic fields, J. Math. Soc. Jpn. 20 (1964), 42–82Google Scholar
  9. 9.
    K. Iwasawa, -, On ℤ l -extensions of algebraic number fields, Ann. Math. 98 (1973), 246–326Google Scholar
  10. 10.
    K. Iwasawa, -, On the μ-invariants of Z 1 -extensions, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo (1973), 1–11Google Scholar
  11. 11.
    K. Kato, p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmétiques III, Astérisque 295 (2004), 117–290Google Scholar
  12. 12.
    M. Lazard, Groupes analytiques p-adiques, Publ. IHES 26 (1965), 389–603Google Scholar
  13. 13.
    B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. France (N.S.) 17 (1984)Google Scholar
  14. 14.
    L. Schneps, On the μ-invariant of p-adic L-functions attached to elliptic curves with complex multiplication, J. Number Theory 25 (1987), 20–33Google Scholar
  15. 15.
    J.-P. Serre, Cohomologie Galoisienne, 5th edition. Lecture Notes in Mathematics, Vol. 5. Springer, Berlin (1994)Google Scholar
  16. 16.
    W. Sinnott, On the μ-invariant of the Γ-transform of a rational function, Invent. Math. 75 (1984), 273–282Google Scholar
  17. 17.
    C. Wuthrich, Extending Kato’s result to curves with p-isogenies, Math. Res. Lett. 13 (2006), 713–718Google Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  1. 1.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations