Serre’s Conjecture II: A Survey

Part of the Developments in Mathematics book series (DEVM, volume 18)


We provide a survey of Serre’s conjecture II (1962) on the vanishing of Galois cohomology for simply connected semisimple groups defined over a field of cohomological dimension at most 2.


Algebraic Group Separable Dimension Linear Algebraic Group Semisimple Group Exceptional Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Algebra 36 (1975), 448–491.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    E. Bayer-Fluckiger, Galois cohomology of the classical groups, Quadratic forms and their applications (Dublin, 1999), 1–7, Contemp. Math. 272 (2000), American Mathematical Society, Providence, RI.Google Scholar
  3. 3.
    E. Bayer-Fluckiger and H.W. Lenstra Jr., Forms in odd degree extensions and self-dual normal bases, Am. J. Math. 112 (1990), 359–373.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomological dimension ≤ 2, Invent. Math. 122 (1995), 195–229.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Berhuy, C. Frings and J.-P. Tignol, Galois cohomology of the classical groups over imperfect fields, J. Pure Appl. Algebra 211 (2007), 307–341.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Borel and J. Tits, Groupes réductifs, Pub. Math. IHES 27 (1965), 55–152.MathSciNetGoogle Scholar
  7. 7.
    M. Borovoi, B. Kunyavskiǐ, and P. Gille, Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields, J. Algebra 276 (2004), 292–339.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    F. Bruhat and J. Tits, Groupes réductifs sur un corps local. Chap. III. Complément et applications à la cohomologie galoisienne, J. Fasc. Sci. Tokyo 34 (1987), 671–698.Google Scholar
  9. 9.
    V. Chernousov, The Hasse principle for groups of type E 8, Dokl. Akad. Nauk. SSSR 306 (1989), 1059–1063 and english transl. in Math. USSR-Izv. 34 (1990), 409–423.Google Scholar
  10. 10.
    F. Bruhat and J. Tits, Remark on the Serre mod-5 invariant for groups of type E 8, Math. Zametki 56 (1994), 116–121, Eng. translation Math. Notes 56 (1994), 730–733Google Scholar
  11. 11.
    F. Bruhat and J. Tits, The kernel of the Rost invariant, Serre’s conjecture II and the Hasse principle for quasi-split groups 3,6 D 4 ,E 6 ,E 7, Math. Ann. 326 (2003), 297–330.CrossRefMathSciNetGoogle Scholar
  12. 12.
    V. Chernousov, P. Gille and Z. Reichstein, Resolution of torsors by abelian extensions, J. Algebra 296 (2006), 561–581.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    V. Chernousov and V. P. Platonov, The rationality problem for semisimple group varieties, J. Reine Angew. Math. 504 (1998), 1–28.MATHMathSciNetGoogle Scholar
  14. 14.
    J.-L. Colliot-Thélène, Algèbres simples centrales sur les corps de fonctions de deux variables (d’après A. J. de Jong), Séminaire Bourbaki, Exp. No. 949 (2004/2005), Astérisque 307 (2006), 379–413.Google Scholar
  15. 15.
    J.-L. Colliot-Thélène, P. Gille and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), 285–341.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J.–L. Colliot–Thélène and M. Ojanguren, Espaces principaux homogènes localement triviaux, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 97–122.Google Scholar
  17. 17.
    J.–L. Colliot–Thélène, M. Ojanguren, and R. Parimala, Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), 185–217, Tata Inst. Fund. Res. Stud. Math. 16 (2002), Bombay.Google Scholar
  18. 18.
    M. Demazure and P. Gabriel, Groupes algébriques, Masson, Paris, France (1970).MATHGoogle Scholar
  19. 19.
    A. Ducros, Dimension cohomologique et points rationnels sur les courbes, J. Algebra 203 (1998), 349–354.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. Fossum and B. Iversen, On Picard groups of algebraic fibre spaces, J. Pure Appl. Algebra 3 (1973), 269–280.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    R.S. Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank, Comment. Math. Helv. 76 (2001), 684–711.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    R. Fossum and B. Iversen, Cohomological invariants: exceptional groups and spin groups, With an appendix by Detlev W. Hoffmann. Mem. Am. Math. Soc. 200 (2009), no. 937Google Scholar
  23. 23.
    R.S. Garibaldi and P. Gille, Algebraic groups with few subgroups, J. Lond. Math. Soc. 80 (2009), 405–430.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    R.S. Garibaldi and D.W. Hoffmann, Totaro’s question on zero-cycles on G 2 , F 4 and E 6 torsors, J. Lond. Math. Soc. 73 (2006), 325–338.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    R.S. Garibaldi, A.A. Merkurjev and J.-P. Serre, Cohomological invariants in Galois cohomology, University Lecture Series, 28 (2003). American Mathematical Society, Providence.Google Scholar
  26. 26.
    P. Gille, La R-équivalence sur les groupes algébriques réductifs définis sur un corps global, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 199–235.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    P. Gille, Invariants cohomologiques de Rost en caractéristique positive, K-Theory 21 (2000), 57–100.Google Scholar
  28. 28.
    P. Gille, Cohomologie galoisienne des groupes quasi-déployés sur des corps de dimension cohomologique ≤ 2, Compositio Math. 125 (2001), 283–325.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    P. Gille, Unipotent subgroups of reductive groups in characteristic p > 0, Duke Math. J. 114 (2002), 307–328.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    P. Gille, An invariant of elements of finite order in semisimple simply connected algebraic groups, J. Group Theory 5 (2002), 177–197.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    P. Gille, Le problème de Kneser-Tits, Astérisque 326 (2009), 39–82.Google Scholar
  32. 32.
    P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics 101 (2006), Cambridge University Press, Cambridge.Google Scholar
  33. 33.
    J. Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften 179 (1971), Springer-Verlag, Berlin.Google Scholar
  34. 34.
    D. Goldstein, R.M. Guralnick, E.W. Howe, M.E. Zieve, Nonisomorphic curves that become isomorphic over extensions of coprime degrees, J. Algebra 320 (2008), 2526–2558.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen I Math. Zeit. 90 (1965), 404–428, II Math. Zeit. 92 (1966), 396–415, III J. für die reine angew. Math. 274/5 (1975), 125–138.Google Scholar
  36. 36.
    A.J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004), 71–94.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    A.J. de Jong, X. He and J.M. Starr, Families of rationally simply connected varieties over surfaces and torsors for semisimple groups, preprint (2008), arxiv:0809.5224.Google Scholar
  38. 38.
    K. Kato, Galois cohomology of complete discrete valuation fields, Lect. Notes in Math. 967 (1982), 215–238.CrossRefGoogle Scholar
  39. 39.
    M. Kneser, Lectures on Galois cohomology, Tata institute (1969).Google Scholar
  40. 40.
    M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The book of involutions, avec une préface de J. Tits, American Mathematical Society Colloquium Publications 44 (1998), American Mathematical Society, Providence, RI.Google Scholar
  41. 41.
    M. Lieblich, Deformation theory and rational points on rationally connected varieties, in this volume.Google Scholar
  42. 42.
    D.W. Lewis and J.-P. Tignol, Classification theorems for central simple algebras with involution, Manuscripta Math. 100 (1999), 259–276.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    B. Margaux, Passage to the limit in non-abelian Čech cohomology, Journal of Lie Theory 17 (2007), 591–596.MATHMathSciNetGoogle Scholar
  44. 44.
    A. S. Merkurjev, Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR 55 (1991), 218–224.MathSciNetGoogle Scholar
  45. 45.
    B. Margaux, K-theory of simple algebras, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), 65–83, Proc. Sympos. Pure Math. 58.1 (1995) American Mathematical Society, Providence, RI.Google Scholar
  46. 46.
    B. Margaux, K-theory and algebraic groups, European Congress of Mathematics, Vol. II (Budapest, 1996), 43–72, Progr. Math. 169 (1998), Birkhäuser.Google Scholar
  47. 47.
    A.S. Merkurjev and A.A. Suslin, \(\mathcal{K}\) -cohomology of Severi-Brauer varieties and norm residue homomorphism, Izv. Akad. Nauk SSSR 46 (1982), 1011–1046, english translation: Math. USSR Izv. 21 (1983), 307–340.Google Scholar
  48. 48.
    A.S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461 (1995), 13–47.MATHMathSciNetGoogle Scholar
  49. 49.
    R. Parimala, Homogeneous varieties—zero-cycles of degree one versus rational points, Asian J. Math. 9 (2005), 251–256.MATHMathSciNetGoogle Scholar
  50. 50.
    V. P. Platonov and A. Rapinchuk, Algebraic groups and number theory, Pure Appl. Math. 139 (1994), Academic Press, London.Google Scholar
  51. 51.
    J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires, J. Reine Angew. Math. 327 (1981), 12–80.MATHMathSciNetGoogle Scholar
  52. 52.
    J-P. Serre, Cohomologie galoisienne des groupes algébriques linéaires, Colloque sur la théorie des groupes algébriques linéaires, Bruxelles (1962), 53–68.Google Scholar
  53. 53.
    J.-J. Sansuc, Cohomologie galoisienne, cinquième édition révisée et complétée, Lecture Notes in Mathematics 5, Springer-Verlag, Berlin.Google Scholar
  54. 54.
    J.-J. Sansuc, Cohomologie galoisienne: Progrès et problèmes, Séminaire Bourbaki, exposé 783 (1993–94), Astérisque 227 (1995).Google Scholar
  55. 55.
    Séminaire de Géométrie algébrique de l’I.H.E.S., 1963-1964, Schémas en groupes, dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math. 151–153, (1970) Springer, Berlin.Google Scholar
  56. 56.
    S. Shatz, Cohomology of artinian group schemes over local fields, Ann. of Math. 79 (1964), 411–449.CrossRefMathSciNetGoogle Scholar
  57. 57.
    N. Semenov, Motivic construction of cohomological invariants, preprint (2008), arxiv:0905.4384v1.Google Scholar
  58. 58.
    J. Starr, Rational points of rationally connected and rationally simply connected varieties, preprint (2008).Google Scholar
  59. 59.
    A. A. Suslin, Algebraic K-theory and the norm–residue homomorphism, J. Soviet. 30 (1985), 2556–2611.MATHCrossRefGoogle Scholar
  60. 60.
    R. Switzer, Algebraic topology—homotopy and homology, Die Grundlehren der mathematischen Wissenschaften, Band 212 (1975), Springer-Verlag, Berlin.Google Scholar
  61. 61.
    J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., Boulder, Colo. (1965) pp. 33–62, Amer. Math. Soc.Google Scholar
  62. 62.
    R. Switzer, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196–220.MathSciNetGoogle Scholar
  63. 63.
    R. Switzer, Résumé des cours du Collège de France 1990–91, Annuaire du Collège de France.Google Scholar
  64. 64.
    R. Switzer, Sur les degrés des extensions de corps déployant les groupes algébriques simples, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 1131–1138.Google Scholar
  65. 65.
    B. Totaro, Splitting fields for E 8 -torsors, Duke Math. J. 121 (2004), 425–455.MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    A. Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. 24 (1960), 589–623.MathSciNetGoogle Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  1. 1.DMA, UMR 8553 du CNRS, Ecole normale supérieureParisFrance

Personalised recommendations