System Level Exploration for the Integration of Optical Networks on Chip in 3D MPSoC Architectures

  • Sébastien Le Beux
  • Jelena Trajkovic
  • Ian O’Connor
  • Gabriela Nicolescu
  • Guy Bois
  • Pierre Paulin
Part of the Embedded Systems book series (EMSY)


Design trends for next-generation multi-processor systems on chip (MPSoC) point to the integration of a large number of processing elements onto a single chip, requiring high-performance interconnect structures for high-throughput communication. On-chip optical interconnect and 3D die stacking are currently considered to be the two most promising paradigms in this design context. New architectures based on these paradigms are currently emerging and new system-level approaches are required for their efficient design. We investigate design tradeoffs for 3D MPSoC integrating optical networks-on-chip (ONoC) and highlight current and short-term design trends. We also propose a system-level design space exploration flow that takes routing capabilities of optical interconnect into account. The resulting application-to-architecture mappings demonstrate the benefits of the presented 3D MPSoC architectures and the efficiency of our system-level exploration flow.


Optical network-on-chip (ONoC) Multi-processor systems on chip (MPSoC) 3D die stacking Design space exploration 


  1. 1.
    International Technology Roadmap for Semiconductors (ITRS) [Online] Available Accessed 30 Aug 2012
  2. 2.
    Ho R, Mai W, Horowitz MA (2001) The future of wires. Proc IEEE 89(4):490–504CrossRefGoogle Scholar
  3. 3.
    Adler V, Friedman E (1998) Repeater design to reduce delay and power in resistive interconnect. IEEE Trans Circuits Syst II Analog Digital Signal Process 45(5):607–616CrossRefGoogle Scholar
  4. 4.
    Nookala V, Sapatnekar SS (2005) Designing optimized pipelined global interconnects: algorithms and methodology impact. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS), Kobe Japan, pp 608–611Google Scholar
  5. 5.
    O’Connor I, Mieyeville F, Gaffiot F, Scandurra A, Nicolescu G (2008) Reduction methods for adapting optical network on chip topologies to specific routing applications. In: Proceedings of design of circuits and integrated systems, Grenoble, 12–14 November 2008Google Scholar
  6. 6.
    Kobrinsky MJ, Block BA, Zheng J-F, Barnett BC, Mohammed E, Reshotko M, Robertson F, List S, Young I, Cadien K (2004) On-chip optical interconnects. INTEL Technol J 8(2):129–141Google Scholar
  7. 7.
    Koester SJ, Dehlinger G, Schaub JD, Chu JO, Ouyang QC, Grill A (2005) Germanium-on-insulator photodetectors. In: IEEE international conference on group VI photonics, Antwerpen, Belgium, pp 171–173Google Scholar
  8. 8.
    Massoud Y et al (2008) Subwavelength nanophotonics for future interconnects and architectures. In: Invited talk, NRI SWAN Center, Rice University, in fact, it is a presentation given in Univeristy of Austin (see
  9. 9.
    Miller D (2009) Device requirement for optical interconnects to silicon chips. Proc IEEE Special Issue Silicon Photon 97(7):1166–1185Google Scholar
  10. 10.
    Minz JR, Thyagara S, Lim SK (2007) Optical routing for 3-D system-on-package. IEEE Trans Components Packaging Technol 30(4):805–812CrossRefGoogle Scholar
  11. 11.
    O’Connor I, Gaffiot F (2004) On-chip optical interconnect for low-power. In: Macii E (ed) Ultra-low power electronics and design. Kluwer, DordrechtGoogle Scholar
  12. 12.
    Gu H, Zhang W, Xu J (2009) A low-power fat tree-based optical network-on-chip for multiprocessor system-on-chip. In: Proceedings of design, automation, and test in Europe (DATE), Nice, France, pp 3–8Google Scholar
  13. 13.
    Gu H, Xu J, Wang Z (2008) A novel optical mesh network-on-chip for gigascale systems-on-chip. In: Proceedings of APCCAS, Macao, pp 1728–1731Google Scholar
  14. 14.
    Pasricha S, Dutt N (2008) ORB: an on-chip optical ring bus communication architecture for multi-processor systems-on-chip. In: Proceedings of ASP-DAC, seoul, korea, pp 789–794Google Scholar
  15. 15.
    Kirman N, Kirman M, Dokania RK, Martinez JF, Apsel AB, Watkins MA, Albonesi DH (2006) Leveraging optical technology in future bus-based chip multiprocessors. In: Proceedings of the 39th annual IEEE/ACM international symposium on microarchitecture, Orlando, Florida, USAGoogle Scholar
  16. 16.
    Shacham A, Bergman K, Carloni L (2008) Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput 57(9):1246–1260MathSciNetCrossRefGoogle Scholar
  17. 17.
    Vantrease D, Schreiber R, Monchiero M, McLaren M, Jouppi NP, Fiorentino M, Davis A, Binkert NL, Beausoleil RG, Ahn JH (2008) Corona: system implications of emerging nanophotonic technology. In: Proceedings of the international symposium on computer architecture (ISCA), Beijing, pp 153–164Google Scholar
  18. 18.
    Beausoleil RG, Ahn J, Binkert N, Davis A, Fattal D, Fiorentino M, Jouppi NP, McLaren M, Santori CM, Schreiber RS, Spillane SM, Vantrease D, Xu Q (2008) A nanophotonic interconnect for high-performance many-core computation. In: Proceedings of the 16th IEEE symposium on high performance interconnects, pp 182–189 Cardiff, UKGoogle Scholar
  19. 19.
    Pan Y, Kumar P, Kim J, Memik G, Zhang Y, Choudhary A (2009) Firefly: illuminating future network-on-chip with nanophotonics. In: Proceedings of International Symposium on Computer Architecture (ISCA), Austin, Texas, pp 429–440Google Scholar
  20. 20.
    Pan Y, Kim J, Memik G (2010) FlexiShare: channel sharing for an energy-efficient nanophotonic crossbar. In: Proceedings of the IEEE international symposium on high-performance computer architecture (HPCA), Bangalore, pp 1–12Google Scholar
  21. 21.
    Briere M, Girodias B, Bouchebaba Y, Nicolescu G, Mieyeville F, Gaffiot F, O’Connor I (2007) System level assessment of an optical NoC in an MPSoC platform. In: Proceedings of design automation and test in Europe, Nice, 16–20 April 2007, pp 1084–1089Google Scholar
  22. 22.
    Joshi A, Batten C, Kwon Y, Beamer S, Shamim I, Asanovic K, Stojanovic V (2009) Silicon-photonic clos networks for global on-chip communication. In: Proceedings of the 3rd ACM/IEEE international symposium on networks-on-chip (NOCS), Catania, Italy, pp 124–133Google Scholar
  23. 23.
    Cianchetti MJ, Kerekes JC, Albonesi DH (2009) Phastlane: a rapid transit optical routing network. In: In: Proceedings of International Symposium on Computer Architecture (ISCA), Austin, Texas, pp 441–450Google Scholar
  24. 24.
    Loi I, Angiolini F, Benini L (2007) Supporting vertical links for 3D networks-on-chip: toward an automated design and analysis flow. In: Proceedings of international conference on nano-networks, Catania, Italy, pp 15:1–15:5Google Scholar
  25. 25.
    Seiculescu C, Murali S, Benini L, De Micheli G (2010) Sunfloor 3D: a tool for networks on chip topology synthesis for 3-D systems on chips. IEEE Trans Comput Aided Des Integr Circuits Syst 29:1987–2000CrossRefGoogle Scholar
  26. 26.
    Zhou P, Yuh P-H, Sapatnekar SS (2010) Application-specific 3D network-on-chip design using simulated allocation. In: Proceedings of the Asia and South Pacific design automation conference (ASPDAC), Taipei, pp 517–522Google Scholar
  27. 27.
    Weerasekeraet R, Zheng LR, Pamunuwa D, Tenhunen H (2007) Extending systems-on-chip to the third dimension: performance, cost and technological tradeoffs. In: Proceedings of international conference on computer-aided design, San Jose, pp 212–219Google Scholar
  28. 28.
    Pavlidis VF, Friedman EG (2007) 3-D topologies for networks-on-chip. IEEE Trans VLSI Syst 15(10):285–288CrossRefGoogle Scholar
  29. 29.
    Feero BS, Pande PP (2009) Networks-on-chip in a three-dimensional environment: a performance evaluation. IEEE Trans Comput 58(1):32–45MathSciNetCrossRefGoogle Scholar
  30. 30.
    Feihui L, Nicopoulos C, Richardson T, Xie Y, Narayanan V, Kandemir M (2006) Design and management of 3D chip multiprocessors using network-in-memory. ACM SIGARCH Comput Archit News 34(2):130–141CrossRefGoogle Scholar
  31. 31.
    Bartzas A, Skalis N, Siozios K, Soudris D (2007) Exploration of alternative topologies for application-specific 3D networks-on-chip. In Workshop on application specific processors (WASP). Salzburg, Austria, doi: Scholar
  32. 32.
    Shan Y, Bill Lin L (2008) Design of application-specific 3D networks-on-chip architectures. In: Proceedings of IEEE international conference on computer design (ICCD), Lake Tahoe, CA, pp 142–149Google Scholar
  33. 33.
    Rahman A, Reif R (2000) System-level performance evaluation of three-dimensional integrated circuits. IEEE Trans VLSI Syst 8(6):671–678CrossRefGoogle Scholar
  34. 34.
    Facchini M, Carlson T, Vignon A, Palkovic M, Catthoor F, Dehaene W, Benini L, Marchal P (2009) System-level power/performance evaluation of 3D stacked DRAMs for mobile applications. In: Proceedings design, automation, and test in Europe (DATE), Nice, France, pp 923–928Google Scholar
  35. 35.
    Dong X, Xie Y (2009) System-level cost analysis and design exploration for three-dimensional integrated circuits (3D ICs). In: Proceedings of ASP-DAC, Yokohama, pp 234–241Google Scholar
  36. 36.
    Addo-Quaye C (2005) Thermal-aware mapping and placement for 3-D NoC designs. In: Proceedings of IEEE international systems-on-chip conference, Herndon, VA, pp 25–28Google Scholar
  37. 37.
    Spuesens T, Liu L, de Vries T, Romeo PR, Regreny P, Van Thourhout D (2009) Improved design of an InP-based microdisk laser heterogeneously integrated with SOI. In: 6th IEEE international conference on group IV photonics (GFP), San Francisco, pp 202–204Google Scholar
  38. 38.
    Le Beux S, Bois G, Nicolescu G, Bouchebaba Y, Langevin M, Paulin P (2010) Combining mapping and partitioning exploration for NoC-based embedded systems. J Syst Archit 56(7): 223–232CrossRefGoogle Scholar
  39. 39.
    Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sébastien Le Beux
    • 1
    • 2
  • Jelena Trajkovic
    • 1
  • Ian O’Connor
    • 2
  • Gabriela Nicolescu
    • 1
  • Guy Bois
    • 1
  • Pierre Paulin
    • 3
  1. 1.École Polytechnique de MontréalMontrealCanada
  2. 2.Ecole Centrale de Lyon – Lyon Institute of NanotechnologyUniversity of LyonEcully CedexFrance
  3. 3.STMicroelectronics (Canada) Inc.OttawaCanada

Personalised recommendations