Designing Chip-Level Nanophotonic Interconnection Networks

  • Christopher Batten
  • Ajay Joshi
  • Vladimir Stojanovć
  • Krste Asanović
Chapter
Part of the Embedded Systems book series (EMSY)

Abstract

Technology scaling will soon enable high-performance processors with hundreds of cores integrated onto a single die, but the success of such systems could be limited by the corresponding chip-level interconnection networks. There have been many recent proposals for nanophotonic interconnection networks that attempt to provide improved performance and energy-efficiency compared to electrical networks. This chapter discusses the approach we have used when designing such networks, and provides a foundation for designing new networks. We begin by reviewing the basic nanophotonic devices before briefly discussing our own silicon-photonic technology that enables monolithic integration in a standard CMOS process. We then outline design issues and categorize previous proposals in the literature at the architectural level, the microarchitectural level, and the physical level. In designing our own networks, we use an iterative process that moves between these three levels of design to meet application requirements given our technology constraints. We use our ongoing work on leveraging nanophotonics in an on-chip title-to-tile network, processor-to-DRAM network, and DRAM memory channel to illustrate this design process.

Keywords

Nanophotonics Optical interconnect Multicore/manycore processors Interconnection networks Network architecture 

References

  1. 1.
    Abousamra A, Melhem R, Jones A (2011) Two-hop free-space based optical interconnects for chip multiprocessors. In: International symposium on networks-on-chip (NOCS), May 2011. http://dx.doi.org/10.1145/1999946.1999961Pittsburgh,PA Google Scholar
  2. 2.
    Alduino A, Liao L, Jones R, Morse M, Kim B, Lo W, Basak J, Koch B, Liu H, Rong H, Sysak M, Krause C, Saba R, Lazar D, Horwitz L, Bar R, Litski S, Liu A, Sullivan K, Dosunmu O, Na N, Yin T, Haubensack F, Hsieh I, Heck J, Beatty R, Park H, Bovington J, Lee S, Nguyen H, Au H, Nguyen K, Merani P, Hakami M, Paniccia MJ (2010) Demonstration of a high-speed 4-channel integrated silicon photonics WDM link with silicon lasers. In: Integrated photonics research, silicon, and nanophotonics (IPRSN), July 2010. http://www.opticsinfobase.org/abstract.cfm?URI=iprsn-2010-pdiwi5Monterey,CA
  3. 3.
    Amatya R, Holzwarth CW, Popović MA, Gan F, Smith HI, Kärtner F, Ram RJ (2007) Low-power thermal tuning of second-order microring resonators. In: Conference on lasers and electro-Optics (CLEO), May 2007. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CFQ5Baltimore,MA Google Scholar
  4. 4.
    Balfour J, Dally W (2006) Design tradeoffs for tiled CMP on-chip networks. In: International symposium on supercomputing (ICS), June 2006. http://dx.doi.org/10.1145/1183401.1183430Queensland,Australia Google Scholar
  5. 5.
    Barwicz T, Byun H, Gan F, Holzwarth CW, Popović MA, Rakich PT, Watts MR, Ippen EP, Kärtner F, Smith HI, Orcutt JS, Ram RJ, Stojanovic V, Olubuyide OO, Hoyt JL, Spector S, Geis M, Grein M, Lyszcarz T, Yoon JU (2007) Silicon photonics for compact, energy-efficient interconnects. J Opt Networks 6(1):63–73CrossRefGoogle Scholar
  6. 6.
    Batten C, Joshi A, Orcutt JS, Khilo A, Moss B, Holzwarth CW, Popović MA, Li H, Smith HI, Hoyt JL, Kärtner FX, Ram RJ, Stojanović V, Asanović K (2008) Building manycore processor-to-DRAM networks with monolithic silicon photonics. In: Symposium on high-performance interconnects (hot interconnects), August 2008 http://dx.doi.org/10.1109/HOTI.2008.11Stanford,CA Google Scholar
  7. 7.
    Batten C, Joshi A, Orcutt JS, Khilo A, Moss B, Holzwarth CW, Popović MA, Li H, Smith HI, Hoyt JL, Kärtner FX, Ram RJ, Stojanović V, Asanović K (2009) Building manycore processor-to-DRAM networks with monolithic CMOS silicon photonics. IEEE Micro 29(4):8-21CrossRefGoogle Scholar
  8. 8.
    Batten C, Joshi A, Stojanović V, Asnaović K (2012) Designing chip-level nanophotonic interconnection networks. IEEE J Emerg Sel Top Circuits Syst. http://dx.doi.org/10.1109/JETCAS.2012.2193932
  9. 9.
    Beamer S, Sun C, Kwon Y-J, Joshi A, Batten C, Stojanović V, Asanović K (2010) Rearchitecting DRAM memory systems with monolithically integrated silicon photonics. In: International symposium on computer architecture (ISCA), June 2010. http://dx.doi.org/10.1145/1815961.1815978Saint-Malo,France Google Scholar
  10. 10.
    Beausoleil RG (2011) Large-scale integrated photonics for high-performance interconnects. ACM J Emerg Technol Comput Syst 7(2):6Google Scholar
  11. 11.
    Beux SL, Trajkovic J, O’Connor I, Nicolescu G, Bois G, Paulin P (2011) Optical ring network-on-chip (ORNoC): architecture and design methodology. In: Design, automation, and test in Europe (DATE), March 2011. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5763134\bibitem{beux-photo-ornoc-date2011} Grenoble, FranceGoogle Scholar
  12. 12.
    Bhuyan LN, Agrawal DP (2007) Generalized hypercube and hyperbus structures for a computer network. IEEE Trans Comput 33(4):323–333CrossRefGoogle Scholar
  13. 13.
    Biberman A, Preston K, Hendry G, Sherwood-Droz N, Chan J, Levy JS, Lipson M, Bergman K (2011) Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors. ACM J Emerg Technol Comput Syst 7(2):7Google Scholar
  14. 14.
    Binkert N, Davis A, Lipasti M, Schreiber R, Vantrease D (2009) Nanophotonic barriers. In: Workshop on photonic interconnects and computer architecture, December 2009. Atlanta, GAGoogle Scholar
  15. 15.
    Block BA, Younkin TR, Davids PS, Reshotko MR, Chang BMPP, Huang S, Luo J, Jen AKY (2008) Electro-optic polymer cladding ring resonator modulators. Opt Express 16(22): 18326–18333CrossRefGoogle Scholar
  16. 16.
    Christiaens I, Thourhout DV, Baets R (2004) Low-power thermo-optic tuning of vertically coupled microring resonators. Electron Lett 40(9):560–561CrossRefGoogle Scholar
  17. 17.
    Cianchetti MJ, Albonesi DH (2011) A low-latency, high-throughput on-chip optical router architecture for future chip multiprocessors. ACM J Emerg Technol Comput Syst 7(2):9Google Scholar
  18. 18.
    Cianchetti MJ, Kerekes JC, Albonesi DH (2009) Phastlane: a rapid transit optical routing network. In: International symposium on computer architecture (ISCA), June 2009. http://dx.doi.org/10.1145/1555754.1555809Austin,TX Google Scholar
  19. 19.
    Clos C (1953) A study of non-blocking switching networks. Bell Syst Techn J 32:406–424Google Scholar
  20. 20.
    Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan Kaufmann. http://www.amazon.com/dp/0122007514
  21. 21.
    DeRose CT, Watts MR, Trotter DC, Luck DL, Nielson GN, Young RW (2010) Silicon microring modulator with integrated heater and temperature sensor for thermal control. In: Conference on lasers and electro-optics (CLEO), May 2010. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2010-CThJ3SanJose,CA Google Scholar
  22. 22.
    Dokania RK, Apsel A (2009) Analysis of challenges for on-chip optical interconnects. In: Great Lakes symposium on VLSI, May 2009. http://dx.doi.org/10.1145/1531542.1531607Paris,France Google Scholar
  23. 23.
    Dumon P, Bogaerts W, Baets R, Fedeli J-M, Fulbert L (2009) Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab. Electron Lett 45(12):581–582CrossRefGoogle Scholar
  24. 24.
    Georgas M, Leu JC, Moss B, Sun C, Stojanović V (2011) Addressing link-level design tradeoffs for integrated photonic interconnects. In: Custom integrated circuits conference (CICC), September 2011 http://dx.doi.org/10.1109/CICC.2011.6055363SanJose,CA Google Scholar
  25. 25.
    Georgas M, Orcutt J, Ram RJ, Stojanović V (2011) A monolithically-integrated optical receiver in standard 45 nm SOI. In: European solid-state circuits conference (ESSCC), September 2011. http://dx.doi.org/10.1109/ESSCIRC.2011.6044993Helsinki,Finland Google Scholar
  26. 26.
    Gu H, Xu J, Zhang W (2009) A low-power fat-tree-based optical network-on-chip for multiprocessor system-on-chip. In: Design, automation, and test in Europe (DATE), May 2009. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5090624Nice,France
  27. 27.
    Guha B, Kyotoku BBC, Lipson M (2010) CMOS-compatible athermal silicon microring resonators. Opt Express 18(4):3487–3493CrossRefGoogle Scholar
  28. 28.
    Gunn C (2006) CMOS photonics for high-speed interconnects. IEEE Micro 26(2):58–66CrossRefGoogle Scholar
  29. 29.
    Hadke A, Benavides T, Yoo SJB, Amirtharajah R, Akella V (2008) OCDIMM: scaling the DRAM memory wall using WDM-based optical interconnects. In: Symposium on high-performance interconnects (hot interconnects), August 2008. http://dx.doi.org/10.1109/HOTI.2008.25Stanford,CA Google Scholar
  30. 30.
    Holzwarth CW, Orcutt JS, Li H, Popović MA, Stojanović V, Hoyt JL, Ram RJ, Smith HI (2008) Localized substrate removal technique enabling strong-confinement microphotonics in bulk-Si-CMOS processes. In: Conference on lasers and electro-optics (CLEO), May 2008. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4571716SanJose,CA Google Scholar
  31. 31.
    Hwang E, Bhave SA (2010) Nanophotonic devices on thin buriod oxide silicon-on insulator substrates. Opt Express 18(4):3850–3857CrossRefGoogle Scholar
  32. 32.
    Joshi A, Batten C, Kwon Y-J, Beamer S, Shamim I, Asanović K, Stojanović V (2009) Silicon-photonic Clos networks for global on-chip communication. In: International symposium on networks-on-chip (NOCS), May 2009 http://dx.doi.org/10.1109/NOCS.2009.5071460SanDiego,CA Google Scholar
  33. 33.
    Kalluri S, Ziari M, Chen A, Chuyanov V, Steier WH, Chen D, Jalali B, Fetterman H, Dalton LR (1996) Monolithic integration of waveguide polymer electro-optic modulators on VLSI circuitry. Photon Technol Lett 8(5):644–646CrossRefGoogle Scholar
  34. 34.
    Kao Y-H, Chao JJ (2011) BLOCON: a bufferless photonic Clos network-on-chip architecture. In: International symposium on networks-on-chip (NOCS), May 2011. http://dx.doi.org/10.1145/1999946.1999960Pittsburgh,PA Google Scholar
  35. 35.
    Kash JA (2008) Leveraging optical interconnects in future supercomputers and servers. In: Symposium on high-performance interconnects (hot interconnects), August 2008. http://dx.doi.org/10.1109/HOTI.2008.29Stanford,CA Google Scholar
  36. 36.
    Kim B, Stojanović V (2008) Characterization of equalized and repeated interconnects for NoC applications. IEEE Design Test Comput 25(5):430–439CrossRefGoogle Scholar
  37. 37.
    Kim J, Balfour J, Dally WJ (2007) Flattened butterfly topology for on-chip networks. In: International symposium on microarchitecture (MICRO), December 2007 http://dx.doi.org/10.1109/MICRO.2007.15Chicago,IL Google Scholar
  38. 38.
    Kimerling LC, Ahn D, Apsel AB, Beals M, Carothers D, Chen Y-K, Conway T, Gill DM, Grove M, Hong C-Y, Lipson M, Liu J, Michel J, Pan D, Patel SS, Pomerene AT, Rasras M, Sparacin DK, Tu K-Y, White AE, Wong CW (2006) Electronic-photonic integrated circuits on the CMOS platform. In: Silicon Photonics, March 2006. http://dx.doi.org/10.1117/12.654455SanJose,CA Google Scholar
  39. 39.
    Kırman N, Kırman M, Dokania RK, Martínez JF, Apsel AB, Watkins MA, Albonesi DH (2006) Leveraging optical technology in future bus-based chip multiprocessors. In: International symposium on microarchitecture (MICRO), December 2006 http://dx.doi.org/10.1109/MICRO.2006.28Orlando,FL Google Scholar
  40. 40.
    Kırman N, Martínez JF (2010) A power-efficient all-optical on-chip interconnect using wavelength-based oblivious routing. In: International conference on architectural support for programming languages and operating systems (ASPLOS), March 2010 http://dx.doi.org/10.1145/1736020.1736024Pittsburgh,PA Google Scholar
  41. 41.
    Koka P, McCracken MO, Schwetman H, Zheng X, Ho R, Krishnamoorthy AV (2010) Silicon-photonic network architectures for scalable, power-efficient multi-chip systems. In: International symposium on computer architecture (ISCA), June 2010 http://dx.doi.org/10.1145/1815961.1815977Saint-Malo,France Google Scholar
  42. 42.
    Koohi S, Abdollahi M, Hessabi S (2011) All-optical wavelength-routed NoC based on a novel hierarchical topology. In: International symposium on networks-on-chip (NOCS), May 2011 http://dx.doi.org/10.1145/1999946.1999962Pittsburgh,PA Google Scholar
  43. 43.
    Kumar P, Pan Y, Kim J, Memik G, Choudhary A (2009) Exploring concentration and channel slicing in on-chip network router. In: International symposium on networks-on-chip (NOCS), May 2009 http://dx.doi.org/10.1109/NOCS.2009.5071477SanDiego,CA Google Scholar
  44. 44.
    Kurian G, Miller J, Psota J, Eastep J, Liu J, Michel J, Kimerling L, Agarwal A (2010) ATAC: a 1000-core cache-coherent processor with on-chip optical network. In: International conference on parallel architectures and compilation techniques (PACT), September 2010. http://dx.doi.org/10.1145/1854273.1854332Minneapolis,MN Google Scholar
  45. 45.
    Leiserson CE (1985) Fat-trees: universal networks for hardware-efficient supercomputing. IEEE Trans Comput C-34(10):892–901CrossRefGoogle Scholar
  46. 46.
    Leu JC, Stojanović V (2011) Injection-locked clock receiver for monolithic optical link in 45 nm. In: Asian solid-state circuits conference (ASSCC), November 2011. http://dx.doi.org/10.1109/ASSCC.2011.6123624Jeju,Korea Google Scholar
  47. 47.
    Li Z, Mohamed M, Chen X, Dudley E, Meng K, Shang L, Mickelson AR, Joseph R, Vachharajani M, Schwartz B, Sun Y (2010) Reliability modeling and management of nanophotonic on-chip networks. In: IEEE Transactions on very large-scale integration systems (TVLSI), PP(99), December 2010Google Scholar
  48. 48.
    Li Z, Mohamed M, Chen X, Zhou H, Michelson A, Shang L, Vachharajani M (2011) Iris: a hybrid nanophotonic network design for high-performance and low-power onchip communication. ACM J Emerg Technol Comput Syst 7(2):8Google Scholar
  49. 49.
    Liow T-Y, Ang K-W, Fang Q, Song J-F, Xiong Y-Z, Yu M-B, Lo G-Q, Kwong D-L (2010) Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization. J Sel Top Quantum Electron 16(1):307–315CrossRefGoogle Scholar
  50. 50.
    Lipson M (2006) Compact electro-optic modulators on a silicon chip. J Sel Top Quantum Electron 12(6):1520–1526CrossRefGoogle Scholar
  51. 51.
    Manipatruni S, Dokania RK, Schmidt B, Sherwood-Droz N, Poitras CB, Apsel AB, Lipson M (2008) Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Opt Lett 33(19):2185–2187CrossRefGoogle Scholar
  52. 52.
    Masini G, Colace L, Assanto G (2003) 2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 ?m. Appl Phys Lett 82(15):5118– 5124Google Scholar
  53. 53.
    Mejia PV, Amirtharajah R, Farrens MK, Akella V (2011) Performance evaluation of a multicore system with optically connected memory modules. In: International symposium on networks on-chip (NOCS), May 2011 http://dx.doi.org/10.1109/NOCS.2010.31Grenoble,France Google Scholar
  54. 54.
    Mesa-Martinez FJ, Nayfach-Battilana J, Renau J (2007) Power model validation through thermal measurements. In: International symposium on computer architecture (ISCA), June 2007 http://dx.doi.org/10.1145/1273440.1250700SanDiego,CA Google Scholar
  55. 55.
    Miller DA (2009) Device requirements for optical interconnects to silicon chips. Proc. IEEE 97(7):1166–1185CrossRefGoogle Scholar
  56. 56.
    Morris R, Kodi A (2010) Exploring the design of 64 & 256 core power efficient nanophotonic interconnect. J Sel Top Quantum Electron 16(5):1386–1393CrossRefGoogle Scholar
  57. 57.
    Nitta C, Farrens M, Akella V (2011) Addressing system-level trimming issues in onchip nanophotonic networks. In: International symposium on high-performance computer architecture (HPCA), February 2011. http://dx.doi.org/10.1109/HPCA.2011.5749722SanAntonio,TX Google Scholar
  58. 58.
    Orcutt JS, Khilo A, Holzwarth CW, Popović MA, Li H, Sun J, Bonifield T, Hollingsworth R, Kaärtner FX, Smith HI, Stojanović V, Ram RJ (2011) Nanophotonic integration in state-of-the-art CMOS foundaries. Opt Express 19(3):2335–2346CrossRefGoogle Scholar
  59. 59.
    Orcutt JS, Khilo A, Popovic MA, Holzwarth CW, Li H, Sun J, Moss B, Dahlem MS, Ippen EP, Hoyt JL, Stojanović V, Kaärtner FX, Smith HI, Ram RJ (2009) Photonic integration in a commercial scaled bulk-CMOS process. In: International conference on photonics in switching, September 2009. http://dx.doi.org/10.1109/PS.2009.5307769Pisa,Italy Google Scholar
  60. 60.
    Orcutt JS, Khilo A, Popovic MA, Holzwarth CW, Moss B, Li H, Dahlem MS, Bonifield TD, Kaärtner FX, Ippen EP, Hoyt JL, Ram RJ, Stojanović V (2008) Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk-CMOS process. In: Conference on lasers and electro-optics (CLEO), May 2008. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4571838SanJose,CA Google Scholar
  61. 61.
    Orcutt JS, Tang SD, Kramer S, Li H, Stojanović V, Ram RJ (2011) Low-loss polysilicon waveguides suitable for integration within a high-volume polysilicon process. In: Conference on lasers and electro-optics (CLEO), May 2011. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5950452Baltimore,MD Google Scholar
  62. 62.
    Pan Y, Kim J, Memik G (2010) FlexiShare: energy-efficient nanophotonic crossbar architecture through channel sharing. In: International symposium on high-performance computer architecture (HPCA), January 2010. http://dx.doi.org/10.1109/HPCA.2010.5416626Bangalore,India Google Scholar
  63. 63.
    Pan Y, Kumar P, Kim J, Memik G, Zhang Y, Choudhary A (2009) Firefly: illuminating on-chip networks with nanophotonics. In: International symposium on computer architecture (ISCA), June 2009. http://dx.doi.org/10.1145/1555754.1555808Austin,TX Google Scholar
  64. 64.
    Pasricha S, Dutt N (2008) ORB: an on-chip optical ring bus communication architecture for multi-processor systems-on-chip. In: Asia and South Pacific design automation conference (ASP-DAC), January 2008 http://dx.doi.org/10.1109/ASPDAC.2008.4484059Seoul,Korea Google Scholar
  65. 65.
    Petracca M, Lee BG, Bergman K, Carloni LP (2009) Photonic NoCs: system-level design exploration. IEEE Micro 29(4):74–77CrossRefGoogle Scholar
  66. 66.
    Poon AW, Luo X, Xu F, Chen H (2009) Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proc IEEE 97(7):1216–1238CrossRefGoogle Scholar
  67. 67.
    Preston K, Manipatruni S, Gondarenko A, Poitras CB, Lipson M (2009) Deposited silicon high-speed integrated electro-optic modulator. Opt Express 17(7):5118–5124CrossRefGoogle Scholar
  68. 68.
    Reed GT (2008) Silicon photonics: the state of the art. Wiley-Interscience. http://www.amazon.com/dp/0470025794
  69. 69.
    Shacham A, Bergman K, Carloni LP (2008) Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput 57(9):1246–1260MathSciNetCrossRefGoogle Scholar
  70. 70.
    Sherwood-Droz N, Preston K, Levy JS, Lipson M (2010) Device guidelines for WDM interconnects using silicon microring resonators. In: Workshop on the interaction between nanophotonic devices and systems (WINDS), December 2010. Atlanta, GAGoogle Scholar
  71. 71.
    Sherwood-Droz N, Wang H, Chen L, Lee BG, Biberman A, Bergman K, Lipson M (2008) Optical 4x4 hitless silicon router for optical networks-on-chip. Opt Express 16(20):15915–15922CrossRefGoogle Scholar
  72. 72.
    Skandron K, Stan MR, Huang W, Velusamy S, Sankarananarayanan K, Tarjan D (2003) Temperature-aware microarchitecture. In: International symposium on computer architecture (ISCA), June 2003. http://dx.doi.org/10.1145/871656.859620SanDiego,CA Google Scholar
  73. 73.
    Thourhout DV, Campenhout JV, Rojo-Romeo P, Regreny P, Seassal C, Binetti P, Leijtens XJM, Notzel R, Smit MK, Cioccio LD, Lagahe C, Fedeli J-M, Baets R (2007) A photonic interconnect layer on CMOS. In: European conference on optical communication (ECOC), September 2007. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5758445Berlin,Germany Google Scholar
  74. 74.
    Udipi AN, Muralimanohar N, Balasubramonian R, Davis A, Jouppi N (2011) Combining memory and a controller with photonics through 3D-stacking to enable scalable and energy-efficient systems. In: International symposium on computer architecture (ISCA), June 2011. http://dx.doi.org/10.1145/2000064.2000115SanJose,CA Google Scholar
  75. 75.
    Vantrease D, Binkert N, Schreiber R, Lipasti MH (2009) Light speed arbitration and flow control for nanophotonic interconnects. In: International symposium on microarchitecture (MICRO), December 2009. http://dx.doi.org/10.1145/1669112.1669152NewYork,NY Google Scholar
  76. 76.
    Vantrease D, Schreiber R, Monchiero M, McLaren M, Jouppi NP, Fiorentino M, Davis A, Binkert N, Beausoleil RG, Ahn JH (2008) Corona: system implications of emerging nanophotonic technology. In: International symposium on computer architecture (ISCA), June 2008. http://dx.doi.org/10.1109/ISCA.2008.35Beijing,China Google Scholar
  77. 77.
    Watts MR, Zortman WA, Trotter DC, Nielson GN, Luck DL, Young RW (2009) Adiabatic resonant microrings with directly integrated thermal microphotonics. In: Conference on lasers and electro-optics (CLEO), May 2009. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CPDB10Baltimore,MD Google Scholar
  78. 78.
    Xue J, Garg A, Çiftçioǧlu B, Hu J, Wang S, Savidis I, Jain M, Berman R, Liu P, Huang M, Wu H, Friedman E, Wicks G, Moore D (2010) An intra-chip free-space optical interconnect. In: International symposium on computer architecture (ISCA), June 2010 http://dx.doi.org/10.1145/1815961.1815975Saint-Malo,France Google Scholar
  79. 79.
    Young IA, Mohammed E, Liao JTS, Kern AM, Palermo S, Block BA, Reshotko MR, Chang PLD (2010) Optical I/O technology for tera-scale computing. IEEE J Solid-State Circuits 45(1):235–248CrossRefGoogle Scholar
  80. 80.
    Zhao W, Cao Y (2006) New generation of predictive technology model for sub-45 nm early design exploration. IEEE Trans Electron Dev 53(11):2816–2823CrossRefGoogle Scholar
  81. 81.
    Zheng X, Lexau J, Luo Y, Thacker H, Pinguet T, Mekis A, Li G, Shi J, Amberg P, Pinckney N, Raj K, Ho R, Cunningham JE, Krishamoorthy AV (2010) Ultra-low energy all-CMOS modulator integrated with driver. Opt Express 18(3):3059–3070CrossRefGoogle Scholar
  82. 82.
    Zhou L, Djordjevic SS, Proietti R, Ding D, Yoo SJB, Amirtharajah R, Akella V (2009) Design and evaluation of an arbitration-free passive optical crossbar for onchip interconnection networks. Appl Phys A Mater Sci Process 95(4):1111–1118CrossRefGoogle Scholar
  83. 83.
    Zhou L, Okamoto K, Yoo SJB (2009) Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding. Photon Technol Lett 21(17):1175–1177CrossRefGoogle Scholar
  84. 84.
    Zortman WA, Trotter DC, Watts MR (2010) Silicon photonics manufacturing. Opt Express 18(23):23598–23607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christopher Batten
    • 1
  • Ajay Joshi
    • 2
  • Vladimir Stojanovć
    • 3
  • Krste Asanović
    • 4
  1. 1.School of Electrical and Computer Engineering, College of EngineeringCornell UniversityIthacaUSA
  2. 2.Department of Electrical and Computer EngineeringBoston UniversityBostonUSA
  3. 3.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Electrical Engineering and Computer ScienceUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations