Technologies and Building Blocks for On-Chip Optical Interconnects

Chapter
Part of the Embedded Systems book series (EMSY)

Abstract

In this chapter we discuss the elemental building blocks to implement optical interconnects on a chip: light sources, photodetectors, switches and multiplexers and of course, the optical waveguides. We discuss how these building blocks can be implemented using silicon technology and evaluate the different integration strategies of the optical layer with electronics silicon photonics optical interconnectswaceguides modulators photodetectorshybrid integration.

Keywords

Silicon photonics Optical interconnects Waceguides Modulators Photodetectors Hybrid integration 

References

  1. 1.
    Agarwal AM, Liao L, Foresi JS, Black MR, Duan X, Kimerling LC (1996) Low-loss polycrystalline silicon waveguides for silicon photonics. J Appl Phys 80(11):6120–6123CrossRefGoogle Scholar
  2. 2.
    Alloatti L, Korn D, Hillerkuss D, Vallaitis T, Li J, Bonk R, Palmer R, Schellinger T, Koos C, Freude W, Leuthold J, Fournier M, Fedeli J, Barklund A, Dinu R, Wieland J, Bogaerts W, Dumon P, Baets R (2010) Silicon high-speed electro-optic modulator. In: 2010 7th IEEE international conference on group IV photonics (GFP), pp 195–197 Beijing, ChinaGoogle Scholar
  3. 3.
    Almeida VR, Panepucci RR (2007) Noems devices based on slot-waveguides. In: Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies, p JThD104 Washington DC, USAGoogle Scholar
  4. 4.
    Anderson PA, Schmidt BS, Lipson M (2006) High confinement in silicon slot waveguides with sharp bends. Opt Express 14(20):9197–9202CrossRefGoogle Scholar
  5. 5.
    Assefa S, Xia F, Vlasov YA (2010) Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464(7285):U80–U91CrossRefGoogle Scholar
  6. 6.
    Baehr-Jones T, Hochberg M, Wang GX, Lawson R, Liao Y, Sullivan PA, Dalton L, Jen AKY, Scherer A (2005) Optical modulation and detection in slotted silicon waveguides. Opt Express 13(14):5216–5226CrossRefGoogle Scholar
  7. 7.
    Barwicz T, Watts MR, Popovic MA, Rakich PT, Socci L, Kartner FX, Ippen EP, Smith HI (2007) Polarization-transparent microphotonic devices in the strong confinement limit. Nat Photon 1:57–60CrossRefGoogle Scholar
  8. 8.
    Bermond C, Cadix L, Farcy A, Lacrevaz T, Leduc P, Flechet B (2009) High frequency characterization and modeling of high density TSV in 3d integrated circuits. In: 2009 SPI ’09 IEEE workshop on signal propagation on interconnects, pp 1–4 Strasbourgh, FranceGoogle Scholar
  9. 9.
    Binetti PRA, Leijtens XJM, de Vries T, Oei YS, Di Cioccio L, Fedeli J-M, Lagahe C, Van Campenhout J, Van Thourhout D, van Veldhoven PJ, Notzel R, Smit MK (2009) Inp/InGaAs photodetector on SOI circuitry. In: Group IV photonics, pp 214–216 2009 6th IEEE international conference on group IV photonics (GFP), San Francisco, USAGoogle Scholar
  10. 10.
    Bogaerts W, Baets R, Dumon P, Wiaux V, Beckx S, Taillaert D, Luyssaert B, Van Campenhout J, Bienstman P, Van Thourhout D (2005) Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol 23(1):401–412CrossRefGoogle Scholar
  11. 11.
    Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. (2012), Silicon microring resonators. Laser & Photon. Rev., 6: 47–73. doi: 10.1002/lpor.201100017Google Scholar
  12. 12.
    Bogaerts W, Dumon P, Van Thourhout D, Taillaert D, Jaenen P, Wouters, J, Beckx S, Wiaux V, Baets R (2006) Compact wavelength-selective functions in silicon-on-insulator photonic wires. J Sel Top Quantum Electron 12(6):1394–1401CrossRefGoogle Scholar
  13. 13.
    Bogaerts W, Selvaraja SK (2011) Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends. IEEE Photon J 3(3):422–432CrossRefGoogle Scholar
  14. 14.
    Bogaerts W, Selvaraja SK, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R (2010) Silicon-on-insulator spectral filters fabricated with CMOS technology. J Sel Top Quantum Electron 16(1):33–44CrossRefGoogle Scholar
  15. 15.
    Bogaerts W, Wiaux V, Taillaert D, Beckx S, Luyssaert B, Bienstman, P, Baets R (2002) Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography. IEEE J Sel Top Quantum Electron 8(4):928–934CrossRefGoogle Scholar
  16. 16.
    Boyraz O, Jalali B (2004) Demonstration of a silicon Raman laser. Opt Express 12(21): 5269–5273CrossRefGoogle Scholar
  17. 17.
    Boyraz O, Jalali B (2005) Demonstration of directly modulated silicon Raman laser. Opt Express 13(3):796–800CrossRefGoogle Scholar
  18. 18.
    Bravo-Abad J, Ippen EP, Soljacic M (2009) Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption. Appl Phys Lett 94:241103CrossRefGoogle Scholar
  19. 19.
    Brouckaert J, Bogaerts W, Dumon P, Van Thourhout D, Baets R (2007) Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform. J Lightwave Technol 25(5):1269–1275CrossRefGoogle Scholar
  20. 20.
    Brouckaert J, Bogaerts W, Selvaraja S, Dumon P, Baets R, Van Thourhout D (2008) Planar concave grating demultiplexer with high reflective Bragg reflector facets. IEEE Photon Technol Lett 20(4):309–311CrossRefGoogle Scholar
  21. 21.
    Brouckaert J, Roelkens G, Van Thourhout D, Baets R (2007) Compact InAlAs/InGaAs metal–semiconductor–metal photodetectors integrated on silicon-on-insulator waveguides. IEEE Photon Techol Lett 19(19):1484–1486CrossRefGoogle Scholar
  22. 22.
    Bulgan E, Kanamori Y, Hane K (2008) Submicron silicon waveguide optical switch driven by microelectromechanical actuator. Appl Phys Lett 92(10):101110CrossRefGoogle Scholar
  23. 23.
    Casalino M, Coppola G, Iodice M, Rendina I, Sirleto L (2010) Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives. Sensors 10:10571–10600CrossRefGoogle Scholar
  24. 24.
    ChaiChuay C, Yupapin PP, Saeung P (2009) The serially coupled multiple ring resonator filters and Vernier effect. Opt Appl XXXIX(1):175–194Google Scholar
  25. 25.
    Chen H-W, Kuo Y-H, Bowers JE (2008) High speed hybrid silicon evanescent mach-zehnder modulator and switch. Opt Express 16:20571–20576CrossRefGoogle Scholar
  26. 26.
    Chen L, Lipson M (2009) Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt Express 17(10):7901–7906CrossRefGoogle Scholar
  27. 27.
    Chu T, Yamada H, Ishida S, Arakawa Y (2005) Compact 1 x n thermo-optic switches based on silicon photonic wire waveguides. Opt Express 13(25):10109–10114CrossRefGoogle Scholar
  28. 28.
    Cunningham JE, Shubin I, Zheng X, Pinguet T, Mekis A, Luo Y, Thacker H, Li G, Yao J, Raj K, Krishnamoorthy AV (2010) Highly-efficient thermally-tuned resonant optical filters. Opt Express 18(18):19055–19063CrossRefGoogle Scholar
  29. 29.
    Dai D, Yang L, He S (2008) Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. J Lightwave Technol 26(5–8):704–709CrossRefGoogle Scholar
  30. 30.
    C. Debaes, D. Agarwal, A. Bhatnagar, H. Thienpont, and D. A. B. Miller, “High-Impedance High-Frequency Silicon Detector Response for Precise Receiverless Optical Clock Injection,” in SPIE Photonics West 2002 Meeting, San Jose, California, Proc. SPIE Vol. 4654, 78–88 (2002)Google Scholar
  31. 31.
    Ding R, Baehr-Jones T, Liu Y, Bojko R, Witzens J, Huang S, Luo J, Benight S, Sullivan P, Fedeli J-M, Fournier M, Dalton L, Jen A, Hochberg M (2010) Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt Express 18(15):15618–15623CrossRefGoogle Scholar
  32. 32.
    Dragone C (1991) An NxN optical multiplexer using a planar arrangement of two star couplers. IEEE Photon Technol Lett 3(9):812–814CrossRefGoogle Scholar
  33. 33.
    Dragone C (1998) Efficient techniques for widening the passband of a wavelength router. J Lightwave Technol 16(10):1895–1906CrossRefGoogle Scholar
  34. 34.
    Dumon P, Bogaerts W, Van Thourhout D, Taillaert D, Baets R, Wouters, J, Beckx S, Jaenen P (2006) Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array. Opt Express 14(2):664–669CrossRefGoogle Scholar
  35. 35.
    Dumon P, Bogaerts W, Wiaux V, Wouters J, Beckx S, Van Campenhout J, Taillaert D, Luyssaert B, Bienstman P, Van Thourhout D, Baets R (2004) Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photon Technol Lett 16(5): 1328–1330CrossRefGoogle Scholar
  36. 36.
    P. Duran, “Blazar 40 Gbps Optical Active Cable,” Luxtera’s white paper from: www.luxtera.com, 2008.Google Scholar
  37. 37.
    Espinola RL, Tsai M-C, Yardley JT, Osgood RM Jr (2003) Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photon Technol Lett 15(10):1366–1368CrossRefGoogle Scholar
  38. 38.
    Fang AW, Koch BR, Gan K-G, Park H, Jones R, Cohen O, Paniccia MJ, Blumenthal DJ, Bowers JE (2008) A racetrack mode-locked silicon evanescent laser. Opt Express 16(2): 1393–1398CrossRefGoogle Scholar
  39. 39.
    Fang AW, Koch BR, Jones R, Lively E, Liang D, Kuo Y-H, Bowers JE (2008) A distributed Bragg reflector silicon evanescent laser. IEEE Photon Technol Lett IEEE 20(20): 1667–1669CrossRefGoogle Scholar
  40. 40.
    Fang AW, Park H, Cohen O, Jones R, Paniccia MJ, Bowers JE (2006) Electrically pumped hybrid algainas-silicon evanescent laser. Opt Express 14(20):9203–9210CrossRefGoogle Scholar
  41. 41.
    Fedeli JM, Augendre E, Hartmann JM, Vivien L, Grosse P, Mazzocchi, V, Bogaerts W, Van Thourhout D, Schrank F (2010) Photonics and electronics integration in the Helios project. In: 2010 7th IEEE international conference on group IV photonics (GFP), pp 356–358 Beijing, ChinaGoogle Scholar
  42. 42.
    Foresi JS, Black MR, Agarwal AM, Kimerling LC (1996) Losses in polycrystalline silicon waveguides. Appl Phys Lett 68(15):2052–2054CrossRefGoogle Scholar
  43. 43.
    Foster MA, Turner AC, Sharping JE, Schmidt BS, Lipson M, Gaeta AL (2006) Broad-band optical parametric gain on a silicon photonic chip. Nature 441(7096):960–963CrossRefGoogle Scholar
  44. 44.
    Gan F, Barwicz T, Popovic MA, Dahlem MS, Holzwarth CW, Rakich PT, Smith HI, Ippen EP, Kartner FX (2007) Maximizing the thermo-optic tuning range of silicon photonic structures. In: 2007 photonics in switching, pp 67–68 San Francisco, USAGoogle Scholar
  45. 45.
    Gardes F, Reed G, Emerson N, Png C (2005) A sub-micron depletion-type photonic modulator in silicon on insulator. Opt Express 13(22):8845–8854CrossRefGoogle Scholar
  46. 46.
    Geis MW, Spector SJ, Grein ME, Yoon JU, Lennon DM, Lyszczarz TM (2009) Silicon waveguide infrared photodiodes with over 35 ghz bandwidth and phototransistors with 50 a/w response. Opt Express 17(7):5193–5204CrossRefGoogle Scholar
  47. 47.
    Geis MW, Spector SJ, Williamson RC, Lyszczarz TM (2004) Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photon Technol Lett 16(11):2514–2516CrossRefGoogle Scholar
  48. 48.
    Gnan M, Thoms S, Macintyre DS, De La Rue RM, Sorel M (2008) Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron Lett 44(2):115–116CrossRefGoogle Scholar
  49. 49.
    Green WMJ, Rooks MJ, Sekaric L, Vlasov YuA (2007) Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt Express 15(25):17106–17113CrossRefGoogle Scholar
  50. 50.
    Gunn C (2006) Cmos photonics for high-speed interconnects. IEEE Micro 26(2):58–66CrossRefGoogle Scholar
  51. 51.
    Han H-S, Seo S-Y, Shin JH, Park N (2002) Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier. Appl Phys Lett 81(20): 3720–3722CrossRefGoogle Scholar
  52. 52.
    Harke A, Krause M, Mueller J (2005) Low-loss singlemode amorphous silicon waveguides. Electron Lett 41(25):1377–1379CrossRefGoogle Scholar
  53. 53.
    Hattori HT, Seassal C, Touraille E, Rojo-Romeo P, Letartre X, Hollinger G, Viktorovitch P, Di Cioccio L, Zussy M, Melhaoui LE, Fedeli JM (2006) Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects. Photon Technol Lett IEEE 18(1):223–225CrossRefGoogle Scholar
  54. 54.
    Healy MB, Lim SK (2009) A study of stacking limit and scaling in 3d ICS: an interconnect perspective. In: 2009 ECTC 2009 59th Electronic components and technology conference, pp 1213–1220 San Diego, USAGoogle Scholar
  55. 55.
    Heebner J, Grover R, Ibrahim T (2008) Optical microresonators: theory, fabrication and applications. In: Springer series in optical sciences, 1st edn. Springer, BerlinGoogle Scholar
  56. 56.
    Ikeda T, Takahashi K, Kanamori Y, Hane K (2010) Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator. Opt Express 18(7):7031–7037CrossRefGoogle Scholar
  57. 57.
    Jacobsen RS, Andersen KN, Borel PI, Fage-Pedersen J, Frandsen LH, Hansen O, Kristensen M, Lavrinenko AV, Moulin G, Ou H, Peucheret, C, Zsigri B, Bjarklev A (2006) Strained silicon as a new electro-optic material. Nature 441(7090):199–202CrossRefGoogle Scholar
  58. 58.
    Kang Y, Liu H-D, Morse M, Paniccia MJ, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y-H, Chen H-W, Zaoui WS, Bowers JE, Beling A, McIntosh DC, Zheng X, Campbell JC (2009) Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat Photon 3(1):59–63CrossRefGoogle Scholar
  59. 59.
    Kazmierczak A, Bogaerts W, Drouard E, Dortu F, Rojo-Romeo P, Gaffiot F, Van Thourhout D, Giannone D (2009) Highly integrated optical 4 x 4 crossbar in silicon-on-insulator technology. J Lightwave Technol 27(16):3317–3323CrossRefGoogle Scholar
  60. 60.
    Kim DH, Mukhopadhyay S, Lim SK (2009) Tsv-aware interconnect length and power prediction for 3d stacked ICS. In: 2009 IITC 2009 IEEE international interconnect technology conference, pp 26–28 Sapporo, JapanGoogle Scholar
  61. 61.
    Koester SJ, Young AM, Yu RR, Purushothaman S, Chen K-N, La Tulipe DC, Rana N, Shi L, Wordeman MR, Sprogis EJ (2008) Wafer-level 3d integration technology. IBM J Res Dev 52(6):583–597CrossRefGoogle Scholar
  62. 62.
    Kuo Y-H, Chen Y-H, Bowers J E (2008) High speed hybrid silicon evanescent electroabsorption modulator. Opt Express 16:9936–9941CrossRefGoogle Scholar
  63. 63.
    Lamponi M, Keyvaninia S, Pommereau F, Brenot R, de Valicourt G, Lelarge F, Roelkens G, Van Thourhout D, Messaoudene S, Fedeli J-M, Duan G-H (2010) Heterogeneously integrated InP/SOI laser using double tapered single-mode waveguides through adhesive die to wafer bonding. In: 2010 7th IEEE international conference on group IV photonics (GFP), pp 22–24 Beijing, ChinaGoogle Scholar
  64. 64.
    Lee S-S, Huang L-S, Kim C-J, Wu MC (1999) Free-space fiber-optic switches based on mems vertical torsion mirrors. J Lightwave Technol 17(1):7–13CrossRefGoogle Scholar
  65. 65.
    Leuthold J, Freude W, Brosi J-M, Baets R, Dumon P, Biaggio I, Scimeca ML, Diederich F, Frank B, Koos C (2009) Silicon organic hybrid technology: a platform for practical nonlinear optics. Proc IEEE 97(7):1304–1316CrossRefGoogle Scholar
  66. 66.
    Liang D, Bowers JE (2008) Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B 26(4):1560–1568CrossRefGoogle Scholar
  67. 67.
    Liang D, Fiorentino M, Okumura T, Chang H-H, Spencer DT, Kuo, Y-H, Fang AW, Dai D, Beausoleil RG, Bowers JE (2009) Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Opt Express 17(22):20355–20364CrossRefGoogle Scholar
  68. 68.
    Liang TK, Tsang HK, Day IE, Drake J, Knights AP, Asghari M (2002) Silicon waveguide two-photon absorption detector at 15  μm wavelength for autocorrelation measurements. Appl Phys Lett 81:1323–1325CrossRefGoogle Scholar
  69. 69.
    Liao L, Liu A, Basak J, Nguyen H, Paniccia M, Rubin D, Chetrit Y, Cohen R, Izhaky N (2007) 40 gbit/s silicon optical modulator for highspeed applications. Electron Lett 43(22)Google Scholar
  70. 70.
    Liao L, Samara-Rubio D, Morse M, Liu A, Hodge D, Rubin D, Keil U, Franck T (2005) High speed silicon Mach–Zehnder modulator. Opt Express 13(8):3129–3135CrossRefGoogle Scholar
  71. 71.
    Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M (2007) High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt Express 15(2):660–668CrossRefGoogle Scholar
  72. 72.
    Liu J, Sun X, Camacho-Aguilera R, Kimerling LC, Michel J (2010) Ge-on-Si laser operating at room temperature. Opt Lett 35(5):679–681CrossRefGoogle Scholar
  73. 73.
    Liu J, Sun X, Pan D, Wang X, Kimerling LC, Koch TL, Michel J (2007) Tensile-strained, n-type Ge as a gain medium formonolithic laser integration on Si. Opt Express 15(18): 11272–11277CrossRefGoogle Scholar
  74. 74.
    Liu L, Pu M, Yvind K, Hvam JM (2010) High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure. Appl Phys Lett 96(5):051126CrossRefGoogle Scholar
  75. 75.
    Liu L, Roelkens G, Van Campenhout J, Brouckaert J, Van Thourhout D, Baets R (2010) Iii–v/silicon-on-insulator nanophotonic cavities for optical network-on-chip. J Nanosci Nanotechnol 10(3):1461–1472CrossRefGoogle Scholar
  76. 76.
    Liu L, Van Campenhout J, Roelkens G, Soref R A, Van Thourhout D, Rojo-Romeo P, Regreny P, Seassal C, Fdli J-M, Baets R (2008) Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated iii-v microdisk cavity. Opt Lett 33(21):2518–2520CrossRefGoogle Scholar
  77. 77.
    Lourenço MA, Gwilliam RM, Homewood KP (2007) Extraordinary optical gain from silicon implanted with erbium. Appl Phys Lett 91(14):141122CrossRefGoogle Scholar
  78. 78.
    Marris-Morini D, Le Roux X, Vivien L, Cassan E, Pascal D, Halbwax, M, Maine S, Laval S, Fédéli J-M, Damlencourt J-F (2006) Optical modulation by carrier depletion in a silicon pin diode. Opt Express 14(22):10838–10843CrossRefGoogle Scholar
  79. 79.
    Marris-Morini D, Vivien L, Fédéli J-M, Cassan E, Lyan P, Laval S (2008) Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Opt Express 16(1):334–339CrossRefGoogle Scholar
  80. 80.
    Martinez A, Blasco J, Sanchis P, Galan JV, Garcia-Ruperez J, Jordana EP, Gautier LY, Hernandez S, Guider R, Daldosso N, Garrido BJ-M, Fedeli PL, Marti J, Spano R (2010) Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett 10(4):1506–1511CrossRefGoogle Scholar
  81. 81.
    McNab SJ, Moll N, Vlasov YA (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Express 11(22):2927–2939CrossRefGoogle Scholar
  82. 82.
    Michel J, Liu J, Kimerling LC (2010) High-performance Ge-on-Si photodetectors. Nat Photon 4(8):527–534CrossRefGoogle Scholar
  83. 83.
    Orcutt JS, Khilo A, Holzwarth CW, Popović MA, Li H, Sun J, Bonifield T, Hollingsworth R, Kärtner FX, Smith HI, Stojanović V, Ram RJ (2011) Nanophotonic integration in state-of-the-art CMOS foundries. Opt Express 19(3):2335–2346CrossRefGoogle Scholar
  84. 84.
    Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408(6811):440–444CrossRefGoogle Scholar
  85. 85.
    Pinguet T, Analui B, Balmater E, Guckenberger D, Harrison M, Koumans R, Kucharski D, Liang Y, Masini G, Mekis A, Mirsaidi S, Narasimha A, Peterson M, Rines D, Sadagopan V, Sahni S, Sleboda TJ, Song, D, Wang Y, Welch B, Witzens J, Yao J, Abdalla S, Gloeckner S, De Dobbelaere P (2008) Monolithically integrated high-speed CMOS photonic transceivers. In: 2008 5th IEEE international conference on group IV photonics, pp 362–364 Sorrento, ItalyGoogle Scholar
  86. 86.
    Reed GT, Mashanovich G, Gardes FY, Thomson DJ (2010) Silicon optical modulators. Nat Photon 4(8):518–526CrossRefGoogle Scholar
  87. 87.
    Roelkens G, Brouckaert J, Taillaert D, Dumon P, Bogaerts W, Van Thourhout D, Baets R (2005) Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. Opt Express 13(25):10102–10108CrossRefGoogle Scholar
  88. 88.
    Roelkens G, Brouckaert J, Van Thourhout D, Baets R, Notzel R, Smit M (2006) Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene. J Electrochem Soc 153(12):G1015–G1019CrossRefGoogle Scholar
  89. 89.
    Roelkens G, Van Thourhout D, Baets R (2007) High efficiency grating couplers between silicon-on-insulator waveguides and perfectly vertical optical fibers. Opt Lett 32(11): 1495–1497CrossRefGoogle Scholar
  90. 90.
    Roelkens G, Van Thourhout D, Baets R, Nötzel R, Smit M (2006) Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt Express 14(18):8154–8159CrossRefGoogle Scholar
  91. 91.
    Rong HS, Liu AS, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M (2005) An all-silicon Raman laser. Nature 433(7023):292–294CrossRefGoogle Scholar
  92. 92.
    Schrauwen J, Scheerlinck S, Van Thourhout D, Baets R (2009) Polymer wedge for perfectly vertical light coupling to silicon. In: Broquin J-M, Greiner CM (eds) Integrated optics: devices, materials, and technologies, vol XIII. Proceedings of SPIE, vol 7218, SPIE, p 72180BGoogle Scholar
  93. 93.
    Selvaraja S, Sleeckx E, Schaekers M, Bogaerts W, Van Thourhout D, Dumon P, Baets R (2009) Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry. Opt Commun 282(9):1767–1770CrossRefGoogle Scholar
  94. 94.
    Selvaraja SK, Bogaerts W, Dumon P, Van Thourhout D, Baets R (2010) Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. J Sel Top Quantum Electron 16(1):316–324CrossRefGoogle Scholar
  95. 95.
    Shin DJ, Lee KH, Ji H-C, Na KW, Kim SG, Bok JK, You YS, Kim SS, Joe IS, Suh SD, Pyo J, Shin YH, Ha KH, Park YD, Chung CH (2010) Mach–Zehnder silicon modulator on bulk silicon substrate; toward dram optical interface. In: 2010 7th IEEE international conference on group IV photonics (GFP), pp 210–212 Beijing, ChinaGoogle Scholar
  96. 96.
    Shoji T, Tsuchizawa T, Watanabe T, Yamada K, Morita H (2002) Low loss mode size converter from 03μm square Si waveguides to singlemode fibres. Electron Lett 38(25):1669–1700CrossRefGoogle Scholar
  97. 97.
    Soref R, Bennett B (1987) Electrooptical effects in silicon. J Quantum Electron 23(1): 123–129CrossRefGoogle Scholar
  98. 98.
    Sparacin DK, Sun R, Agarwal AM, Beals MA, Michel J, Kimerling LC, Conway TJ, Pomerene AT, Carothers DN, Grove MJ, Gill DM, Rasras MS, Patel SS, White AE (2006) Low-loss amorphous silicon channel waveguides for integrated photonics. In: 2006 3rd IEEE international conference on group IV photonics, pp 255–257 Ottawa, CanadaGoogle Scholar
  99. 99.
    Spector S, Geis MW, Lennon D, Williamson RC, Lyszczarz TM (2004) Hybrid multi-mode/single-mode waveguides for low loss. In: Optical amplifiers and their applications/integrated photonics research. Optical Society of America, p IThE5 San FranciscoGoogle Scholar
  100. 100.
    Spuesens T, Liu L, De Vries T, Rojo-Romeo P, Regreny P, Van Thourhout D (2009) Improved design of an InP-based microdisk laser heterogeneously integrated with SOI. In: 6th IEEE international conference on group IV photonics, p FA3 Sorrento, ItalyGoogle Scholar
  101. 101.
    Sun P, Reano RM (2010) Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt Express 18(8):8406–8411CrossRefGoogle Scholar
  102. 102.
    Taillaert D, Bogaerts W, Bienstman P, Krauss TF, Van Daele P, Moerman I, Verstuyft S, De Mesel K, Baets R (2002) An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. J Quantum Electron 38(7):949–955CrossRefGoogle Scholar
  103. 103.
    Taillaert D, Van Laere F, Ayre M, Bogaerts W, Van Thourhout D, Bienstman P, Baets R (2006) Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn J Appl Phys 45(8A):6071–6077Google Scholar
  104. 104.
    Teng J, Dumon P, Bogaerts W, Zhang H, Jian X, Han X, Zhao M, Morthier G, Baets R (2009) Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt Express 17(17):14627–14633CrossRefGoogle Scholar
  105. 105.
    Tsuchizawa T, Yamada K, Fukuda H, Watanabe T, Takahashi J, Takahashi, M, Shoji T, Tamechika E, Itabashi S, Morita H (2005) Microphotonics devices based on silicon microfabrication technology. IEEE J Sel Top Quantum Electron 11(1):232–240CrossRefGoogle Scholar
  106. 106.
    Van Acoleyen K, Roels J, Claes T, Van Thourhout D, Baets RG (2011) Nems-based optical phase modulator fabricated on silicon-on-insulator. In: 2011 8th IEEE international conference on group IV photonics, p FC6 London, UKGoogle Scholar
  107. 107.
    Van Campenhout J, Green WMJ, Assefa S, Vlasov YA (2010) Integrated nisi waveguide heaters for CMOS-compatible silicon thermooptic devices. Opt Lett 35(7):1013–1015CrossRefGoogle Scholar
  108. 108.
    Van Campenhout J, Green WM, Assefa S, Vlasov YuA (2009) Low-power, 2x2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt Express 17(26):24020–24029CrossRefGoogle Scholar
  109. 109.
    Van Campenhout J, Liu L, Romeo PR, Van Thourhout D, Seassal C, Regreny P, Di Cioccio L, Fedeli J-M, Baets R (2008) A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon Technol Lett 20(16):1345–1347CrossRefGoogle Scholar
  110. 110.
    Van Campenhout J, Rojo RP, Regreny P, Seassal C, Van Thourhout D, Verstruyft S, Di Ciocco L, Fedeli J-M, Lagahe C, Baets R (2007) Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express 15(11): 6744–6749CrossRefGoogle Scholar
  111. 111.
    Van Laere F, Claes T, Schrauwen J, Scheerlinck S, Bogaerts W, Taillaert D, O’Faolain L, Van Thourhout D, Baets R (2007) Compact focusing grating couplers for silicon-on-insulator integrated circuits. Photon Technol Lett 19(23):1919–1921CrossRefGoogle Scholar
  112. 112.
    Van Laere F, Roelkens G, Ayre M, Schrauwen J, Taillaert D, Van Thourhout D, Krauss TF, Baets R (2007) Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J Lightwave Technol 25(1):151–156CrossRefGoogle Scholar
  113. 113.
    Van Thourhout D, Spuesens T, Selvaraja SK, Liu L, Roelkens G, Kumar R, Morthier G, Rojo-Romeo P, Mandorlo F, Regreny P, Raz O, Kopp C, Grenouillet L (2010) Nanophotonic devices for optical interconnect. J Sel Top Quantum Electron 16(5):1363–1375CrossRefGoogle Scholar
  114. 114.
    Vermeulen D, Selvaraja S, Verheyen P, Lepage G, Bogaerts W, Absil P, Van Thourhout D, Roelkens G (2010) High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt Express 18(17):18278–18283CrossRefGoogle Scholar
  115. 115.
    Vivien L, Osmond J, Fédéli J-M, Marris-Morini D, Crozat P, Damlencourt J-F, Cassan E, Lecunff Y, Laval S (2009) 42 ghz pin germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express 17(8):6252–6257CrossRefGoogle Scholar
  116. 116.
    Vivien L, Rouvière M, Fédéli J-M, Marris-Morini D, Damlencourt J-F, Mangeney J, Crozat P, El Melhaoui L, Cassan E, Le Roux X, Pascal D, Laval S (2007) High speed and high responsivity germanium photodetector integrated in a silicon-on-insulator microwaveguide. Opt Express 15(15):9843–9848CrossRefGoogle Scholar
  117. 117.
    Vlasov Y, Green WMJ, Xia F (2008) High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photon 2(4):242–246CrossRefGoogle Scholar
  118. 118.
    Wang Z, Chen Y-Z, Doerr CR (2009) Analysis of a synchronized flattop AWG using low coherence interferometric method. IEEE Photon Technol Lett 21(8):498–500CrossRefGoogle Scholar
  119. 119.
    Watts MR, Trotter DC, Young RW, Lentine AL (2008) Ultralow power silicon microdisk modulators and switches. In: 2008 5th IEEE international conference on group IV photonics, pp 4–6 Sorrento, ItalyGoogle Scholar
  120. 120.
    Webster MA, Pafchek RM, Sukumaran G, Koch TL (2005) Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator. Appl Phys Lett 87(23), p.231108Google Scholar
  121. 121.
    Xia F, Rooks M, Sekaric L, Vlasov Yu (2007) Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt Express 15(19):11934–11941CrossRefGoogle Scholar
  122. 122.
    Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M (2007) 125 gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt Express 15(2):430–436CrossRefGoogle Scholar
  123. 123.
    Yamada K, Shoji T, Tsuchizawa T, Watanabe T, Takahashi J, Itabashi S (2005) Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges. J Sel Topics Quantum Electron 11:232–240CrossRefGoogle Scholar
  124. 124.
    Ye T, Cai X (2010) On power consumption of silicon-microring-based optical modulators. J Lightwave Technol 28(11):1615–1623CrossRefGoogle Scholar
  125. 125.
    Zhang L, Yue Y, Xiao-Li Y, Wang J, Beausoleil RG, Willner AE (2010) Flat and low dispersion in highly nonlinear slot waveguides. Opt Express 18(12):13187–13193CrossRefGoogle Scholar
  126. 126.
    Zheng X, Patil D, Lexau J, Liu F, Li G, Thacker H, Luo Y, Shubin I, Li J, Yao J, Dong P, Feng D, Asghari M, Pinguet T, Mekis A, Amberg P, Dayringer M, Gainsley J, Moghadam H F, Alon E, Raj K, Ho R, Cunningham J, Krishnamoorthy A (2011) Ultra-efficient 10gb/s hybrid integrated silicon photonic transmitter and receiver. Opt Express 19(6):5172–5186CrossRefGoogle Scholar
  127. 127.
    Zhu S, Fang Q, Yu MB, Lo GQ, Kwong DL (2009) Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides. Opt Express 17(23):20891–20899CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Information Technology, Photonics Research GroupGhent University – IMECGentBelgium
  2. 2.School of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangzhouChina

Personalised recommendations