Abstract
Splitting an input image into connected sets of pixels is the purpose of image segmentation. The resulting sets, called regions, are defined based on visual properties extracted by local features. To reduce the gap between the computed segmentation and the one expected by the user, these properties tend to embed the perceived complexity of the regions and sometimes their spatial relationship as well. Therefore, we developed different segmentation approaches, sweeping from classical color texture to recent color fractal features, in order to express this visual complexity and show how it can be used to express homogeneity, distances, and similarity measures. We present several segmentation algorithms, like JSEG and color structure code (CSC), and provide examples for different parameter settings of features and algorithms. The now classical segmentation approaches, like pyramidal segmentation and watershed, are also presented and discussed, as well as the graph-based approaches. For the active contour approach, a diffusion model for color images is proposed. Before drawing the conclusions, we talk about segmentation performance evaluation, including the concepts of closed-loop segmentation, supervised segmentation and quality metrics, i.e., the criteria for assessing the quality of an image segmentation approach. An extensive list of references that covers most of the relevant related literature is provided.
Colors, like features, follow the changes of the emotions
Pablo Picasso
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The process must be absolutely continuous with respect to the ℝ d—Lebesgue measure.
- 2.
To reduce the computational cost, Deng proposes a reduced list of values to try: \([-0.6,-0.4,-0.2, 0, 0.2, 0.4]\).
- 3.
i arbitrary, but large.
References
Seo N (2008) Tutorial: OpenCV haartraining, Rapid object detection with a cascade of boosted classifiers based on haar-like features, http://note.sonots.com/SciSoftware/haartraining.html
Bradski G, Kaehler A, Pisarevsky V (2005) Learning-based computer vision with Intel’s open source computer vision library. Intel Technology Journal, vol. 09, issue 02, May 2005
Ameling S, Wirth S, Shevchenko N, Wittenberg T, Paulus D, Münzenmayer C (2009) Detection of lesions in colonoscopic images: a review. In: Dössel O, Schlegel WC (eds) World congress on medical physics and biomedical engineering, vol 25/IV. Springer, Heidelberg, pp 995–998
Angulo J, Serra J (2003) Color segmentation by ordered mergings. In: Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, vol 2, pp II – 125–8 vol 3, DOI:10.1109/ICIP.2003.1246632
Antonisse HJ (1982) Image segmentation in pyramids. Comput Graph Image Process 19(4):367–383, DOI:10.1016/0146-664X(82)90022-3
Arbelaez PA, Cohen LD (2004) Segmentation d’images couleur par partitions de voronoi - color image segmentation by voronoi partitions. Traitement du signal 21(5):407–421
Bardet JM (1998) Dimension de corrlation locale et dimension de hausdorff des processus vectoriels continus - local correlation dimension and hausdorff dimension of continuous random fields. Comptes Rendus de l’Acadmie des Sciences - Series I - Mathematics 326(5):589–594
Barnard K, Duygulu P, Freitas OD, Forsyth D (2002) Object recognition as machine translation - part 2: exploiting image data-base clustering models. In: European Conference on Computer Vision
Barnard K, Duygulu P, Forsyth D, de Freitas N, Blei DM, Jordan MI (2003) Matching words and pictures. J Mach Learn Res 3:1107–1135
Beucher S (1982) Watersheds of functions and picture segmentation. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’82 7:1928–1931
Beucher S (1994) Watershed, hierarchical segmentation and waterfall algorithm. In: Serra J, Soille P (eds) Mathematical morphology and its applications to image processing, computational imaging and vision, Kluwer Academic Publishers, Fontainebleau, France, vol 2. pp 69–76
Bhanu B, Lee S, Ming J (1991) Closed-loop adaptive image segmentation. In: Computer vision and pattern recognition 1991, Maui, Hawaii, pp 734–735
Bister M, Cornelis J, Rosenfeld A (1990) A critical view of pyramid segmentation algorithms. Pattern Recogn Lett 11:605–617, DOI:10.1016/0167-8655(90)90013-R
Borsotti M, Campadelli P, Schettini R (1998) Quantitative evaluation of color image segmentation results. Pattern Recogn Lett 19:741–747
Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: International conference on computer vision, vol 1, pp 105–112
Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698
Caputo B, Vincze M (eds) (2008) Cognitive Vision, 4th International Workshop - Revised Selected Papers, Santorini, Greece, May 12, 2008
Cesar Jr RM, Bengoetxea E, Bloch I, Larrañaga P (2005) Inexact graph matching for model-based recognition: evaluation and comparison of optimization algorithms. Pattern Recognition, Volume 38, Issue 11
Chanussot J, Lambert P (1998) Total ordering based on space filling curves for multivalued morphology. In: Proceedings of the fourth international symposium on Mathematical morphology and its applications to image and signal processing, Kluwer Academic Publishers, Norwell, MA, USA, ISMM ’98, pp 51–58
Chanussot J, Lambert P (1999) Watershed approaches for color image segmentation. In: NSIP’99, pp 129–133
Chaudhuri B, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17(1):72–77
Chen J, Pappas T, Mojsilovic A, Rogowitz B (2005) Adaptive perceptual color-texture image segmentation. IEEE Trans Image Process 14(10):1524–1536
Chi CY, Tai SC (2006) Perceptual color contrast based watershed for color image segmentation. In: Systems, man and cybernetics, 2006. SMC ’06. IEEE international conference on, vol 4, pp 3548–3553
Commission Internationale de l’Eclairage (CIE) (2008) Colorimetry - part 4: Cie 1976 l*a*b* colour spaces. Tech. rep., CIE
Commission Internationale de l’Eclairage (CIE) (1995) Industrial colour-difference evaluation. CIE Publication 116
Commission Internationale de l’Eclairage (CIE) (2001) Technical report: improvement to industrial colordifference evaluation. CIE Publication 142
Clarke FJJ, McDonald R, Rigg B (1984) Modification to the JPC79 Colour–difference Formula. J Soc Dyers Colourists 100(4):128–132
Cohen LD (1991) On active contour models and balloons. CVGIP: Image Underst 53:211–218, DOI:10.1016/1049-9660(91)90028-N
Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619, DOI:10.1109/34.1000236
Cordella LP, Foggia P, Sansone C, Vento M (2001) An improved algorithm for matching large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based representations in pattern recognition, Cuen, pp 149–159
Couprie M, Bertrand G (1997) Topological gray-scale watershed transform. In: Proceedings of SPIE vision geometry V, vol 3168, pp 136–146
Cousty J, Bertrand G, Najman L, Couprie M (2009) Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans Pattern Anal Mach Intell 31(8):1362–1374
Deng Y, Manjunath BS (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell (PAMI ’01) 23(8):800–810
Deng Y, Manjunath BS, Shin H (1999) Color image segmentation. In: Proc. IEEE computer society conference on computer vision and pattern recognition CVPR’99, Fort Collins, CO, vol 2, pp 446–51
Desolneux A, Moisan L, Morel JM (2003) Computational gestalts and perception thresholds. J Physiol 97:311–324
DIN 6176. Farbmetrische Bestimmung von Farbabständen bei Körperfarben nach der DIN99-Formel (Colorimetric evaluation of colour differences of surface colours according to DIN99 formula), DIN Deutsches Institut für Normung e. V., Burggrafenstraße 6, 10787 Berlin, Germany
Dombre J (2003) Multi-scale representation systems for indexing and restoring color medieval archives, PhD thesis, University of Poitiers, France, http://tel.archives-ouvertes.fr/tel-00006234/
Domon M, Honda E (1999) Correlation of measured fractal dimensions with lacunarities in computer-generated three-dimensional images of cantor sets and those of fractal brownian motion. In: FORMA, vol 14, pp 249–263
Duygulu P, Barnard K, Freitas JFG de, Forsyth DA (2002) Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of the 7th European conference on computer vision-part IV, Springer-Verlag, London, UK, UK, ECCV 02, pp 97–112
Edgar G (1990) Measure, topology and fractal geometry. Springer, New York
Everingham M, Zisserman A, Williams C, Van Gool L, Allan M, Bishop C, Chapelle O, Dalal N, Deselaers T, Dork G, Duffner S, Eichhorn J, Farquhar J, Fritz M, Garcia C, Griffiths T, Jurie F, Keysers D, Koskela M, Laaksonen J, Larlus D, Leibe B, Meng H, Ney H, Schiele B, Schmid C, Seemann E, Shawe-Taylor J, Storkey A, Szedmak S, Triggs B, Ulusoy I, Viitaniemi V, Zhang J (2006) The 2005 pascal visual object classes challenge. In: Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising tectual entailment, Lecture notes in computer science, vol 3944. Springer, Berlin, pp 117–176
Falconer K (1990) Fractal Geometry, mathematical foundations and applications. Wiley, New York
Feagin R (2005) Heterogeneity versus homogeneity: a conceptual and mathematical theory in terms of scale-invariant and scale-covariant distributions. Ecol Complex 2:339–356
Ford L, Fulkerson D (1962) Flows in networks. Princeton University Press, Princeton
Fu K, Mui J (1981) A survey on image segmentation. Pattern Recogn 13(1):3–16
Funt BV, Finlayson GD (1995) Color constant color indexing. IEEE Trans Pattern Anal Mach Intell 17:522–529
Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–179, DOI:10.1016/S0146-664X(75)80008-6
Gil D, Radeva P (2003) Curvature vector flow to assure convergent deformable models for shape modelling. In: EMMCVPR, pp 357–372
Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc., NJ
Hanbury A (2003) A 3d-polar coordinate colour representation well adapted to image analysis. In: Proceedings of the 13th Scandinavian conference on image analysis, Springer, Berlin, Heidelberg, SCIA’03, pp 804–811
Hanson A, Riseman E (1978) Visions: a computer system for interpreting scenes. In: Hanson A, Riseman E (eds) Computer vision systems. Academic, New York, pp 303–333
Haralick R, Shapiro L (1985) Image segmentation techniques. Comput Vis Graph Image Process 29(1):100–132
Harris C, Stephens M (1988) A Combined Corner and Edge Detection, in Proceedings of the 4th Alvey Vision Conference, volume 15, pp 147–151
He L, Han CY, Everding B, Wee WG (2004) Graph matching for object recognition and recovery. Pattern recogn 37:1557–1560
Hemery B, Laurent H, Rosenberger C (2009) Evaluation metric for image understanding. In: ICIP, pp 4381–4384
Hemery B, Laurent H, Rosenberger C (2010) Subjective evaluation of image understanding results. In: European Signal Processing Conference (EUSIPCO), August 23–27, Aalborg, Denmark
Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of the 1997 conference on computer vision and pattern recognition (CVPR ’97), IEEE Computer Society, Washington, CVPR ’97, pp 762–768
Huang ZK, Liu DH (2007) Segmentation of color image using em algorithm in hsv color space. In: Information acquisition, 2007. ICIA ’07. International conference on, pp 316–319, DOI:10.1109/ICIA.2007.4295749
Ionescu M, Ralescu A (2004) Fuzzy hamming distance in a content-based image retrieval system. In: Fuzzy systems, 2004. Proceedings. 2004 IEEE international conference on, vol 3, pp 1721–1726
Ivanovici M, Richard N (2009a) Fractal dimension of colour fractal images. IEEE TransImage Process 20(1):227–235
Ivanovici M, Richard N (2009b) The lacunarity of colour fractal images. In: ICIP’09 - IEEE international conference on image processing, Cairo, Egypt, pp 453–456
Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Inc., NJ, USA
Jing X, Jian W, Feng Y, Zhi-ming C (2008) A level set method for color image segmentation based on bayesian classifier. In: Computer science and software engineering, 2008 International conference on, vol 2, pp 886–890, DOI:10.1109/CSSE.2008.1193
Jolion JM, Montanvert A (1991) The adaptive pyramid: a framework for 2d image analysis. CVGIP: Image underst 55:339–348
Jones M, Viola P (2003) Fast multi-view face detection, Technical Report, Mitsubishi Electric Research Laboratories
Kapur T, Grimson WEL, Kikinis R (1995) Segmentation of brain tissue from mr images. In: Proceedings of the first international conference on computer vision, virtual reality and robotics in medicine, Springer, London, UK, CVRMed ’95, pp 429–433
Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331
Keller J, Chen S (1989) Texture description and segmentation through fractal geometry. Comput Vis Graph Image process 45:150–166
Kiser C, Musial C, Sen P (2008) Accelerating Active Contour Algorithms with the Gradient Diffusion Field. In: Proceedings of international conference on pattern recognition (ICPR) 2008
Kolasa J, Rollo C (1991) chap The heterogeneity of heterogeneity: a glossary. Ecological heterogeneity (Ecological studies), 1st edn. Springer, New-York, pp 1–23
Komati KS, Salles EO, Filho MS (2009) Fractal-jseg: jseg using an homogeneity measurement based on local fractal descriptor. Graphics, patterns and images, SIBGRAPI Conference on 0:253–260
Kropatsch W (1995) Building irregular pyramids by dual-graph contraction. Vision Image Signal Process, IEE Proc - 142(6):366–374, DOI:10.1049/ip-vis:19952115
Kwatra V, Schödl A, Essa I, Turk G, Bobick A (2003) Graphcut textures: image and video synthesis using graph cuts. In: ACM SIGGRAPH 2003 Papers, ACM, New York, SIGGRAPH ’03, pp 277–286
Lay J, Guan L (2004) Retrieval for color artistry concepts. IEEE Trans Image Process 13(3):326–339
Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) Turbopixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell: 31(12):2290–2297
Li B, Loehle C (1995) Wavelet analysis of multiscale permeabilities in the subsurface. Geophys Res Lett 22(23):3123–3126
Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73(2):280–284
Liu J, Yang YH (1994) Multiresolution color image segmentation. IEEE Trans Pattern Anal Mach Intell 16:689–700, DOI:10.1109/34.297949
MacAdam D (1942) Visual sensitivities to color differences in daylight. JOSA 32(5):247–273
Mandelbrot B (1982) The fractal geometry of nature. W.H. Freeman and Co, New-York
Marfil R, Molina-Tanco L, Bandera A, Rodríguez J, Sandoval F (2006) Pyramid segmentation algorithms revisited. Pattern Recogn 39:1430–1451
Marfil R, Rodrguez JA, Bandera A, Sandoval F (2004) Bounded irregular pyramid: a new structure for color image segmentation. Pattern Recogn 37(3):623–626, DOI: 10.1016/j.patcog.2003.08.012
Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Computer vision, 2001. ICCV 2001. Proceedings. Eighth IEEE international conference on, vol 2, pp 416–423
Martin V, Thonnat M, Maillot N (2006) A learning approach for adaptive image segmentation. In: Proceedings of the fourth IEEE international conference on computer vision systems, IEEE Computer Society, Washington, pp 40–48
Meyer F (1992) Color image segmentation. In: Image processing and its applications, International conference on, pp 303–306
Micusik B, Hanbury A (2005) Supervised texture detection in images. In: Conference on computer analysis of images and patterns (CAIP), pp. 441–448, Versailles, France
Mojsilovic A, Hu H, Soljanin E (2002) Extraction of perceptually important colors and similarity measurement for image matching, retrieval and analysis. IEEE Trans Image Process 11(11):1238–1248
Moravec H (1980) Obstacle avoidance and navigation in the real world by a seeing robot rover. In: tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University, CMU-RI-TR-80-03
Mortensen EN, Barrett WA (1998) Interactive segmentation with intelligent scissors. In: Graphical models and image processing, pp 349–384
Nachlieli H, Shaked D (2011) Measuring the quality of quality measures. IEEE Trans Image Process 20(1):76–87
Nadenau M (2000) Integration of human color vision models into high quality image compression, PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), http://infoscience.epfl.ch/record/32772
Ozkan D, Duygulu P (2006) Finding people frequently appearing in news. In: Sundaram H, Naphade M, Smith J, Rui Y (eds) Image and video retrieval, lecture notes in computer science, vol 4071. Springer, Berlin, pp 173–182
Pailloncy JG, Deruyver A, Jolion JM (1999) From pixels to predicates revisited in the graphs framework. In: 2nd international workshop on graph based representations,GbR99
Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294
Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill, New York
Park HK, Chung MJ (2002) Exernal force of snakes: virtual electric field. Electron Lett 38(24):1500–1502
Pass G, Zabih R, Miller J (1996) Comparing images using color coherence vectors. In: ACM multimedia, pp 65–73
Pauli H (1976) Proposed extension of the CIE recommendation on Uniform color spaces, color difference equations, and metric color terms. JOSA 66(8):866–867
Paulus D, Hornegger J, Niemann H (1999) Software engineering for image processing and analysis. In: Jähne B, Gei”sler P, Hau”secker H (eds) Handbook of computer vision and applications, Academic, San Diego, pp 77–103
Phillips I, Chhabra A (1999) Empirical performance evaluation of graphics recognition systems. IEEE Trans Pattern Anal Mach Intell 21(9):849–870, DOI:10.1109/34.790427
Plotnick R, Gardner R, O’Neill R (1993) Lacunarity indices as measures of landscape texture. Lanscape Ecol 8(3):201–211
Pratt WK (2001) Digital image processing: PIKS Inside, 3rd edn. Wiley, New York
Prewer D, Kitchen L (2001) Soft image segmentation by weighted linked pyramid. Pattern Recogn Lett 22:123–132
Priese L, Rehrmann V (1993) On hierarchical color segmentation and applications. In: Proceedings, Proceedings of the conference on computer vision and pattern recognition, pp 633–634
Randall J, Guan L, Li W, XZhang (2008) The hcm for perceptual image segmentation. Neurocomputing 71(10-12):1966–1979
Renyi A (1955) On a new axiomatic theory of probability. Acta Mathematica Hungarica 6(3-4):285–335
Rezaee M, van der Zwet P, Lelieveldt B, van der Geest R, Reiber J (2000) A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Trans Image Process 9(7):1238–1248, DOI:10.1109/83.847836
Richard N, Bringier B, Rollo E (2005) Integration of human perception for color texture management. In: Signals, circuits and systems, 2005. ISSCS 2005. International symposium on, vol 1, pp 207–210
Roerdink JB, Meijster A (2001) The wastershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41:187–228
Rosenfeld A (1970) Connectivity in digital pictures. J ACM 17(1):146–160
Rosenfeld A (1974) Adjacency in digital pictures. Inform Contr 26(1):24–33
Rosenfeld A (1979) Digital topology. Am Math Mon 86(8):621–630
Rosenfeld A (1986) Some pyramid techniques for image segmentation. Springer, London, pp 261–271
Rubner Y, Guibas L, Tomasi C (1997) The earth mover’s distance, multi-dimensional scaling, and color-based image retrieval. In: DARPA97, pp 661–668
Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with applications to image databases. In: Proceedings of the 1998 IEEE international conference on computer vision, Bombay, India, pp 59–66
Saarinen K (1994) Color image segmentation by a watershed algorithm and region adjacency graph processing. In: Image processing, 1994. Proceedings. ICIP-94., IEEE international conference, vol 3, pp 1021–1025, DOI:10.1109/ICIP.1994.413690
Saunders S, Chen J, Drummer T, Gustafson E, Brosofske K (2005) Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses. Ecol Complex 2:87–105
Schiffman HR (1996) Sensation and perception: an integrated approach, 4th edn. Wiley, New York
Serra J (2006) A lattice approach to image segmentation. J Math Imaging Vis 24:83–130, DOI:10.1007/s10851-005-3616-0
Seve R (1991) New formula for the computation of CIE 1976 hue difference. Color Res Appl 16(3):217–218
Seve R (1996) Practical formula for the computation of CIE 1976 hue difference. Color Res Appl21(4):314–314
Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell (PAMI) 22(8):888–905
Singh A, Terzopoulos D, Goldgof DB (1998) Deformable models in medical image analysis, 1st edn. IEEE Computer Society Press, Los Alamitos
Sinop AK, Grady L (2007) A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: Computer vision, IEEE international conference on, IEEE Computer Society, Los Alamitos, pp 1–8
Smith J, Chang SF (1995) Single color extraction and image query. In: Image processing, 1995. Proceedings., International conference on, vol 3, pp 528–531, DOI:10.1109/ICIP. 1995.537688
Stricker M, Orengo M (1995) Similarity of color images. In: Storage and retrieval for image and video databases, pp 381–392
Sum KW, Cheung PYS (2007) Boundary vector field for parametric active contours. Pattern Recogn 40:1635–1645, DOI:10.1016/j.patcog.2006.11.006
Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32
Tang X (1998) Texture information in run-length matrices. IEEE Trans Image Process 7(11):1602–1609, DOI:10.1109/83.725367
Tao Wang IC, Basu A (2009) Fluid vector flow and applications in brain tumor segmentation. IEEE Trans Biomed Eng 56(3):781–789
Terzopoulos D (2003) Deformable models: classic, topology-adaptive and generalized formulations. In: Osher S, Paragios N (eds) Geometric level set methods in imaging, vision, and graphics, chap 2. Springer, New York, pp 21–40
Tremeau A, Colantoni P (2000) Regions adjacency graph applied to color image segmentation. IEEE Trans Image Process 9(4):735–744
Turiac M, Ivanovici M, Radulescu T, Buzuloiu V (2010) Variance-driven active contours. In: IPCV, pp 83–86
Turner M, Gardner R, ONeill R (2001) Landscape ecology in theory and practice: Pattern and process. Springer, New York
Urdiales C, Dominguez M, de Trazegnies C, Sandoval F (2010) A new pyramid-based color image representation for visual localization. Image Vis Comput 28(1):78–91, DOI:10.1016/j.imavis.2009.04.014
Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE PAMI 13(6):583–598
Viola P, Jones M (2001) Robust real-time object detection. In: 2nd International workshop on statistical and computational theories of vision – Modeling, learning, computing, and sampling. Vancouver, Canada
Voss R (1986) Random fractals: characterization and measurement. Scaling phenomena in disordered systems 10(1):51–61
Willersinn D, Kropatsch W (94) Dual graph contraction for irregular pyramids. In: International conference on pattern recognition, Jerusalem, pp 251–256
Wirtz S, Paulus D (2010) Model-based recognition of 2d objects in perspective images. In: Proceedings of the 10th international conference on pattern recognition and image analysis: new information technologies (PRIA-10-2010), St. Petersburg, Russia, 978-5-7325-0972-4, pp 259–261
Witkin A, Terzopoulos D, Kass M (1987) Signal matching through scale space. Int J Comput Vis 1:133–144
Witkin AP (1983) Scale-space filtering. In: International joint conference on artificial intelligence, pp 1019–1022
Wu Q, Castleman KR (2008) Image segmentation. In: Microscope image processing. Academic, Burlington, pp 159–194, DOI:10.1016/B978-0-12-372578-3.00009-X
Xia Y, Feng D, Zhao R (2006) Morphology-based multifractal estimation for texture segmentation. IEEE Trans Image Process 15(3):614–623, DOI:10.1109/TIP.2005.863029
Xiang S, Pan C, Nie F, Zhang C (2010) Turbopixel segmentation using eigen-images.IEEE Trans Image Process 19(11):3024–3034, DOI:10.1109/TIP.2010.2052268
Xu C, Prince JL (1997) Gradient vector flow: a new external force for snakes. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), IEEE Computer Society, Washington, DC, USA, pp 66–71
Xu C, Prince JL (1998a) Generalized gradient vector flow external forces for active contours. Signal Process 71:131–139
Xu C, Prince JL (1998b) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369
Xu Y, Duygulu P, Saber E, Tekalp AM, Yarman-Vural FT (2003) Object-based image labeling through learning by example and multi-level segmentation. Pattern Recogn 36(6):1407–1423, DOI:10.1016/S0031-3203(02)00250-9
Yu Sy, Zhang Y, Wang Yg, Yang J (2008) Unsupervised color-texture image segmentation. J Shanghai Jiaotong University (Science) 13:71–75
Zahn CT (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans Comput 20:68–86
Zhang YJ (2006) Advances in image and video segmentation. IRM Press, USA
Zhao R, Grosky WI (2001) Bridging the semantic gap in image retrieval, in Distributed multimedia databases: Techniques and applications, IGI Global, pp 14–36
Acknowledgment
We would like to thank Martin Druon, Audrey Ledoux, and Julien Dombre (XLIM-SIC UMR CNRS 6172, Université de Poitiers, France), Diana Stoica and Alexandru Căliman (MIV Imaging Venture, Transilvania University, Braşov, România) for the results they provided and for the fruitful discussions. Image “angel” is courtesy of Centre d’Etudes Supérieurs de Civilisation Médiévale (CESCM), UMR 6223, Poitiers, France, while the melanoma image is courtesy of Dermnet Skin Disease Image Atlas, http://www.dermnet.com.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Ivanovici, M., Richard, N., Paulus, D. (2013). Color Image Segmentation. In: Fernandez-Maloigne, C. (eds) Advanced Color Image Processing and Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6190-7_8
Download citation
DOI: https://doi.org/10.1007/978-1-4419-6190-7_8
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-6189-1
Online ISBN: 978-1-4419-6190-7
eBook Packages: EngineeringEngineering (R0)