Skip to main content

Color Image Segmentation

  • Chapter
  • First Online:
Advanced Color Image Processing and Analysis

Abstract

Splitting an input image into connected sets of pixels is the purpose of image segmentation. The resulting sets, called regions, are defined based on visual properties extracted by local features. To reduce the gap between the computed segmentation and the one expected by the user, these properties tend to embed the perceived complexity of the regions and sometimes their spatial relationship as well. Therefore, we developed different segmentation approaches, sweeping from classical color texture to recent color fractal features, in order to express this visual complexity and show how it can be used to express homogeneity, distances, and similarity measures. We present several segmentation algorithms, like JSEG and color structure code (CSC), and provide examples for different parameter settings of features and algorithms. The now classical segmentation approaches, like pyramidal segmentation and watershed, are also presented and discussed, as well as the graph-based approaches. For the active contour approach, a diffusion model for color images is proposed. Before drawing the conclusions, we talk about segmentation performance evaluation, including the concepts of closed-loop segmentation, supervised segmentation and quality metrics, i.e., the criteria for assessing the quality of an image segmentation approach. An extensive list of references that covers most of the relevant related literature is provided.

Colors, like features, follow the changes of the emotions

Pablo Picasso

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The process must be absolutely continuous with respect to the d—Lebesgue measure.

  2. 2.

    To reduce the computational cost, Deng proposes a reduced list of values to try: \([-0.6,-0.4,-0.2, 0, 0.2, 0.4]\).

  3. 3.

    i arbitrary, but large.

References

  1. Seo N (2008) Tutorial: OpenCV haartraining, Rapid object detection with a cascade of boosted classifiers based on haar-like features, http://note.sonots.com/SciSoftware/haartraining.html

  2. Bradski G, Kaehler A, Pisarevsky V (2005) Learning-based computer vision with Intel’s open source computer vision library. Intel Technology Journal, vol. 09, issue 02, May 2005

    Google Scholar 

  3. Ameling S, Wirth S, Shevchenko N, Wittenberg T, Paulus D, Münzenmayer C (2009) Detection of lesions in colonoscopic images: a review. In: Dössel O, Schlegel WC (eds) World congress on medical physics and biomedical engineering, vol 25/IV. Springer, Heidelberg, pp 995–998

    Google Scholar 

  4. Angulo J, Serra J (2003) Color segmentation by ordered mergings. In: Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, vol 2, pp II – 125–8 vol 3, DOI:10.1109/ICIP.2003.1246632

    Google Scholar 

  5. Antonisse HJ (1982) Image segmentation in pyramids. Comput Graph Image Process 19(4):367–383, DOI:10.1016/0146-664X(82)90022-3

    Article  Google Scholar 

  6. Arbelaez PA, Cohen LD (2004) Segmentation d’images couleur par partitions de voronoi - color image segmentation by voronoi partitions. Traitement du signal 21(5):407–421

    MATH  Google Scholar 

  7. Bardet JM (1998) Dimension de corrlation locale et dimension de hausdorff des processus vectoriels continus - local correlation dimension and hausdorff dimension of continuous random fields. Comptes Rendus de l’Acadmie des Sciences - Series I - Mathematics 326(5):589–594

    Article  MathSciNet  MATH  Google Scholar 

  8. Barnard K, Duygulu P, Freitas OD, Forsyth D (2002) Object recognition as machine translation - part 2: exploiting image data-base clustering models. In: European Conference on Computer Vision

    Google Scholar 

  9. Barnard K, Duygulu P, Forsyth D, de Freitas N, Blei DM, Jordan MI (2003) Matching words and pictures. J Mach Learn Res 3:1107–1135

    MATH  Google Scholar 

  10. Beucher S (1982) Watersheds of functions and picture segmentation. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’82 7:1928–1931

    Google Scholar 

  11. Beucher S (1994) Watershed, hierarchical segmentation and waterfall algorithm. In: Serra J, Soille P (eds) Mathematical morphology and its applications to image processing, computational imaging and vision, Kluwer Academic Publishers, Fontainebleau, France, vol 2. pp 69–76

    Google Scholar 

  12. Bhanu B, Lee S, Ming J (1991) Closed-loop adaptive image segmentation. In: Computer vision and pattern recognition 1991, Maui, Hawaii, pp 734–735

    Google Scholar 

  13. Bister M, Cornelis J, Rosenfeld A (1990) A critical view of pyramid segmentation algorithms. Pattern Recogn Lett 11:605–617, DOI:10.1016/0167-8655(90)90013-R

    Article  MATH  Google Scholar 

  14. Borsotti M, Campadelli P, Schettini R (1998) Quantitative evaluation of color image segmentation results. Pattern Recogn Lett 19:741–747

    Article  MATH  Google Scholar 

  15. Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: International conference on computer vision, vol 1, pp 105–112

    Google Scholar 

  16. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  17. Caputo B, Vincze M (eds) (2008) Cognitive Vision, 4th International Workshop - Revised Selected Papers, Santorini, Greece, May 12, 2008

    Google Scholar 

  18. Cesar Jr RM, Bengoetxea E, Bloch I, Larrañaga P (2005) Inexact graph matching for model-based recognition: evaluation and comparison of optimization algorithms. Pattern Recognition, Volume 38, Issue 11

    Google Scholar 

  19. Chanussot J, Lambert P (1998) Total ordering based on space filling curves for multivalued morphology. In: Proceedings of the fourth international symposium on Mathematical morphology and its applications to image and signal processing, Kluwer Academic Publishers, Norwell, MA, USA, ISMM ’98, pp 51–58

    Google Scholar 

  20. Chanussot J, Lambert P (1999) Watershed approaches for color image segmentation. In: NSIP’99, pp 129–133

    Google Scholar 

  21. Chaudhuri B, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17(1):72–77

    Article  Google Scholar 

  22. Chen J, Pappas T, Mojsilovic A, Rogowitz B (2005) Adaptive perceptual color-texture image segmentation. IEEE Trans Image Process 14(10):1524–1536

    Article  Google Scholar 

  23. Chi CY, Tai SC (2006) Perceptual color contrast based watershed for color image segmentation. In: Systems, man and cybernetics, 2006. SMC ’06. IEEE international conference on, vol 4, pp 3548–3553

    Google Scholar 

  24. Commission Internationale de l’Eclairage (CIE) (2008) Colorimetry - part 4: Cie 1976 l*a*b* colour spaces. Tech. rep., CIE

    Google Scholar 

  25. Commission Internationale de l’Eclairage (CIE) (1995) Industrial colour-difference evaluation. CIE Publication 116

    Google Scholar 

  26. Commission Internationale de l’Eclairage (CIE) (2001) Technical report: improvement to industrial colordifference evaluation. CIE Publication 142

    Google Scholar 

  27. Clarke FJJ, McDonald R, Rigg B (1984) Modification to the JPC79 Colour–difference Formula. J Soc Dyers Colourists 100(4):128–132

    Article  Google Scholar 

  28. Cohen LD (1991) On active contour models and balloons. CVGIP: Image Underst 53:211–218, DOI:10.1016/1049-9660(91)90028-N

    Article  MATH  Google Scholar 

  29. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619, DOI:10.1109/34.1000236

    Article  Google Scholar 

  30. Cordella LP, Foggia P, Sansone C, Vento M (2001) An improved algorithm for matching large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based representations in pattern recognition, Cuen, pp 149–159

    Google Scholar 

  31. Couprie M, Bertrand G (1997) Topological gray-scale watershed transform. In: Proceedings of SPIE vision geometry V, vol 3168, pp 136–146

    Google Scholar 

  32. Cousty J, Bertrand G, Najman L, Couprie M (2009) Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans Pattern Anal Mach Intell 31(8):1362–1374

    Article  Google Scholar 

  33. Deng Y, Manjunath BS (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell (PAMI ’01) 23(8):800–810

    Google Scholar 

  34. Deng Y, Manjunath BS, Shin H (1999) Color image segmentation. In: Proc. IEEE computer society conference on computer vision and pattern recognition CVPR’99, Fort Collins, CO, vol 2, pp 446–51

    Google Scholar 

  35. Desolneux A, Moisan L, Morel JM (2003) Computational gestalts and perception thresholds. J Physiol 97:311–324

    Google Scholar 

  36. DIN 6176. Farbmetrische Bestimmung von Farbabständen bei Körperfarben nach der DIN99-Formel (Colorimetric evaluation of colour differences of surface colours according to DIN99 formula), DIN Deutsches Institut für Normung e. V., Burggrafenstraße 6, 10787 Berlin, Germany

    Google Scholar 

  37. Dombre J (2003) Multi-scale representation systems for indexing and restoring color medieval archives, PhD thesis, University of Poitiers, France, http://tel.archives-ouvertes.fr/tel-00006234/

  38. Domon M, Honda E (1999) Correlation of measured fractal dimensions with lacunarities in computer-generated three-dimensional images of cantor sets and those of fractal brownian motion. In: FORMA, vol 14, pp 249–263

    Google Scholar 

  39. Duygulu P, Barnard K, Freitas JFG de, Forsyth DA (2002) Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of the 7th European conference on computer vision-part IV, Springer-Verlag, London, UK, UK, ECCV 02, pp 97–112

    Google Scholar 

  40. Edgar G (1990) Measure, topology and fractal geometry. Springer, New York

    MATH  Google Scholar 

  41. Everingham M, Zisserman A, Williams C, Van Gool L, Allan M, Bishop C, Chapelle O, Dalal N, Deselaers T, Dork G, Duffner S, Eichhorn J, Farquhar J, Fritz M, Garcia C, Griffiths T, Jurie F, Keysers D, Koskela M, Laaksonen J, Larlus D, Leibe B, Meng H, Ney H, Schiele B, Schmid C, Seemann E, Shawe-Taylor J, Storkey A, Szedmak S, Triggs B, Ulusoy I, Viitaniemi V, Zhang J (2006) The 2005 pascal visual object classes challenge. In: Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising tectual entailment, Lecture notes in computer science, vol 3944. Springer, Berlin, pp 117–176

    Google Scholar 

  42. Falconer K (1990) Fractal Geometry, mathematical foundations and applications. Wiley, New York

    MATH  Google Scholar 

  43. Feagin R (2005) Heterogeneity versus homogeneity: a conceptual and mathematical theory in terms of scale-invariant and scale-covariant distributions. Ecol Complex 2:339–356

    Article  Google Scholar 

  44. Ford L, Fulkerson D (1962) Flows in networks. Princeton University Press, Princeton

    MATH  Google Scholar 

  45. Fu K, Mui J (1981) A survey on image segmentation. Pattern Recogn 13(1):3–16

    Article  MathSciNet  Google Scholar 

  46. Funt BV, Finlayson GD (1995) Color constant color indexing. IEEE Trans Pattern Anal Mach Intell 17:522–529

    Article  Google Scholar 

  47. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–179, DOI:10.1016/S0146-664X(75)80008-6

    Article  Google Scholar 

  48. Gil D, Radeva P (2003) Curvature vector flow to assure convergent deformable models for shape modelling. In: EMMCVPR, pp 357–372

    Google Scholar 

  49. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc., NJ

    Google Scholar 

  50. Hanbury A (2003) A 3d-polar coordinate colour representation well adapted to image analysis. In: Proceedings of the 13th Scandinavian conference on image analysis, Springer, Berlin, Heidelberg, SCIA’03, pp 804–811

    Google Scholar 

  51. Hanson A, Riseman E (1978) Visions: a computer system for interpreting scenes. In: Hanson A, Riseman E (eds) Computer vision systems. Academic, New York, pp 303–333

    Google Scholar 

  52. Haralick R, Shapiro L (1985) Image segmentation techniques. Comput Vis Graph Image Process 29(1):100–132

    Article  Google Scholar 

  53. Harris C, Stephens M (1988) A Combined Corner and Edge Detection, in Proceedings of the 4th Alvey Vision Conference, volume 15, pp 147–151

    Google Scholar 

  54. He L, Han CY, Everding B, Wee WG (2004) Graph matching for object recognition and recovery. Pattern recogn 37:1557–1560

    Article  Google Scholar 

  55. Hemery B, Laurent H, Rosenberger C (2009) Evaluation metric for image understanding. In: ICIP, pp 4381–4384

    Google Scholar 

  56. Hemery B, Laurent H, Rosenberger C (2010) Subjective evaluation of image understanding results. In: European Signal Processing Conference (EUSIPCO), August 23–27, Aalborg, Denmark

    Google Scholar 

  57. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of the 1997 conference on computer vision and pattern recognition (CVPR ’97), IEEE Computer Society, Washington, CVPR ’97, pp 762–768

    Google Scholar 

  58. Huang ZK, Liu DH (2007) Segmentation of color image using em algorithm in hsv color space. In: Information acquisition, 2007. ICIA ’07. International conference on, pp 316–319, DOI:10.1109/ICIA.2007.4295749

    Google Scholar 

  59. Ionescu M, Ralescu A (2004) Fuzzy hamming distance in a content-based image retrieval system. In: Fuzzy systems, 2004. Proceedings. 2004 IEEE international conference on, vol 3, pp 1721–1726

    Google Scholar 

  60. Ivanovici M, Richard N (2009a) Fractal dimension of colour fractal images. IEEE TransImage Process 20(1):227–235

    Article  MathSciNet  Google Scholar 

  61. Ivanovici M, Richard N (2009b) The lacunarity of colour fractal images. In: ICIP’09 - IEEE international conference on image processing, Cairo, Egypt, pp 453–456

    Google Scholar 

  62. Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Inc., NJ, USA

    MATH  Google Scholar 

  63. Jing X, Jian W, Feng Y, Zhi-ming C (2008) A level set method for color image segmentation based on bayesian classifier. In: Computer science and software engineering, 2008 International conference on, vol 2, pp 886–890, DOI:10.1109/CSSE.2008.1193

    Google Scholar 

  64. Jolion JM, Montanvert A (1991) The adaptive pyramid: a framework for 2d image analysis. CVGIP: Image underst 55:339–348

    Article  Google Scholar 

  65. Jones M, Viola P (2003) Fast multi-view face detection, Technical Report, Mitsubishi Electric Research Laboratories

    Google Scholar 

  66. Kapur T, Grimson WEL, Kikinis R (1995) Segmentation of brain tissue from mr images. In: Proceedings of the first international conference on computer vision, virtual reality and robotics in medicine, Springer, London, UK, CVRMed ’95, pp 429–433

    Google Scholar 

  67. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    Article  Google Scholar 

  68. Keller J, Chen S (1989) Texture description and segmentation through fractal geometry. Comput Vis Graph Image process 45:150–166

    Article  Google Scholar 

  69. Kiser C, Musial C, Sen P (2008) Accelerating Active Contour Algorithms with the Gradient Diffusion Field. In: Proceedings of international conference on pattern recognition (ICPR) 2008

    Google Scholar 

  70. Kolasa J, Rollo C (1991) chap The heterogeneity of heterogeneity: a glossary. Ecological heterogeneity (Ecological studies), 1st edn. Springer, New-York, pp 1–23

    Google Scholar 

  71. Komati KS, Salles EO, Filho MS (2009) Fractal-jseg: jseg using an homogeneity measurement based on local fractal descriptor. Graphics, patterns and images, SIBGRAPI Conference on 0:253–260

    Google Scholar 

  72. Kropatsch W (1995) Building irregular pyramids by dual-graph contraction. Vision Image Signal Process, IEE Proc - 142(6):366–374, DOI:10.1049/ip-vis:19952115

    Article  Google Scholar 

  73. Kwatra V, Schödl A, Essa I, Turk G, Bobick A (2003) Graphcut textures: image and video synthesis using graph cuts. In: ACM SIGGRAPH 2003 Papers, ACM, New York, SIGGRAPH ’03, pp 277–286

    Google Scholar 

  74. Lay J, Guan L (2004) Retrieval for color artistry concepts. IEEE Trans Image Process 13(3):326–339

    Article  Google Scholar 

  75. Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) Turbopixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell: 31(12):2290–2297

    Article  Google Scholar 

  76. Li B, Loehle C (1995) Wavelet analysis of multiscale permeabilities in the subsurface. Geophys Res Lett 22(23):3123–3126

    Article  Google Scholar 

  77. Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73(2):280–284

    Article  Google Scholar 

  78. Liu J, Yang YH (1994) Multiresolution color image segmentation. IEEE Trans Pattern Anal Mach Intell 16:689–700, DOI:10.1109/34.297949

    Article  Google Scholar 

  79. MacAdam D (1942) Visual sensitivities to color differences in daylight. JOSA 32(5):247–273

    Article  Google Scholar 

  80. Mandelbrot B (1982) The fractal geometry of nature. W.H. Freeman and Co, New-York

    Google Scholar 

  81. Marfil R, Molina-Tanco L, Bandera A, Rodríguez J, Sandoval F (2006) Pyramid segmentation algorithms revisited. Pattern Recogn 39:1430–1451

    Article  MATH  Google Scholar 

  82. Marfil R, Rodrguez JA, Bandera A, Sandoval F (2004) Bounded irregular pyramid: a new structure for color image segmentation. Pattern Recogn 37(3):623–626, DOI: 10.1016/j.patcog.2003.08.012

    Article  Google Scholar 

  83. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Computer vision, 2001. ICCV 2001. Proceedings. Eighth IEEE international conference on, vol 2, pp 416–423

    Google Scholar 

  84. Martin V, Thonnat M, Maillot N (2006) A learning approach for adaptive image segmentation. In: Proceedings of the fourth IEEE international conference on computer vision systems, IEEE Computer Society, Washington, pp 40–48

    Google Scholar 

  85. Meyer F (1992) Color image segmentation. In: Image processing and its applications, International conference on, pp 303–306

    Google Scholar 

  86. Micusik B, Hanbury A (2005) Supervised texture detection in images. In: Conference on computer analysis of images and patterns (CAIP), pp. 441–448, Versailles, France

    Google Scholar 

  87. Mojsilovic A, Hu H, Soljanin E (2002) Extraction of perceptually important colors and similarity measurement for image matching, retrieval and analysis. IEEE Trans Image Process 11(11):1238–1248

    Article  MathSciNet  Google Scholar 

  88. Moravec H (1980) Obstacle avoidance and navigation in the real world by a seeing robot rover. In: tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University, CMU-RI-TR-80-03

    Google Scholar 

  89. Mortensen EN, Barrett WA (1998) Interactive segmentation with intelligent scissors. In: Graphical models and image processing, pp 349–384

    Google Scholar 

  90. Nachlieli H, Shaked D (2011) Measuring the quality of quality measures. IEEE Trans Image Process 20(1):76–87

    Article  MathSciNet  Google Scholar 

  91. Nadenau M (2000) Integration of human color vision models into high quality image compression, PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), http://infoscience.epfl.ch/record/32772

  92. Ozkan D, Duygulu P (2006) Finding people frequently appearing in news. In: Sundaram H, Naphade M, Smith J, Rui Y (eds) Image and video retrieval, lecture notes in computer science, vol 4071. Springer, Berlin, pp 173–182

    Chapter  Google Scholar 

  93. Pailloncy JG, Deruyver A, Jolion JM (1999) From pixels to predicates revisited in the graphs framework. In: 2nd international workshop on graph based representations,GbR99

    Google Scholar 

  94. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Article  Google Scholar 

  95. Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  96. Park HK, Chung MJ (2002) Exernal force of snakes: virtual electric field. Electron Lett 38(24):1500–1502

    Article  MathSciNet  Google Scholar 

  97. Pass G, Zabih R, Miller J (1996) Comparing images using color coherence vectors. In: ACM multimedia, pp 65–73

    Google Scholar 

  98. Pauli H (1976) Proposed extension of the CIE recommendation on Uniform color spaces, color difference equations, and metric color terms. JOSA 66(8):866–867

    Article  Google Scholar 

  99. Paulus D, Hornegger J, Niemann H (1999) Software engineering for image processing and analysis. In: Jähne B, Gei”sler P, Hau”secker H (eds) Handbook of computer vision and applications, Academic, San Diego, pp 77–103

    Google Scholar 

  100. Phillips I, Chhabra A (1999) Empirical performance evaluation of graphics recognition systems. IEEE Trans Pattern Anal Mach Intell 21(9):849–870, DOI:10.1109/34.790427

    Article  Google Scholar 

  101. Plotnick R, Gardner R, O’Neill R (1993) Lacunarity indices as measures of landscape texture. Lanscape Ecol 8(3):201–211

    Article  Google Scholar 

  102. Pratt WK (2001) Digital image processing: PIKS Inside, 3rd edn. Wiley, New York

    Google Scholar 

  103. Prewer D, Kitchen L (2001) Soft image segmentation by weighted linked pyramid. Pattern Recogn Lett 22:123–132

    Article  MATH  Google Scholar 

  104. Priese L, Rehrmann V (1993) On hierarchical color segmentation and applications. In: Proceedings, Proceedings of the conference on computer vision and pattern recognition, pp 633–634

    Google Scholar 

  105. Randall J, Guan L, Li W, XZhang (2008) The hcm for perceptual image segmentation. Neurocomputing 71(10-12):1966–1979

    Google Scholar 

  106. Renyi A (1955) On a new axiomatic theory of probability. Acta Mathematica Hungarica 6(3-4):285–335

    MathSciNet  MATH  Google Scholar 

  107. Rezaee M, van der Zwet P, Lelieveldt B, van der Geest R, Reiber J (2000) A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Trans Image Process 9(7):1238–1248, DOI:10.1109/83.847836

    Article  Google Scholar 

  108. Richard N, Bringier B, Rollo E (2005) Integration of human perception for color texture management. In: Signals, circuits and systems, 2005. ISSCS 2005. International symposium on, vol 1, pp 207–210

    Google Scholar 

  109. Roerdink JB, Meijster A (2001) The wastershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41:187–228

    MathSciNet  Google Scholar 

  110. Rosenfeld A (1970) Connectivity in digital pictures. J ACM 17(1):146–160

    Article  MathSciNet  MATH  Google Scholar 

  111. Rosenfeld A (1974) Adjacency in digital pictures. Inform Contr 26(1):24–33

    Article  MathSciNet  MATH  Google Scholar 

  112. Rosenfeld A (1979) Digital topology. Am Math Mon 86(8):621–630

    Article  MathSciNet  MATH  Google Scholar 

  113. Rosenfeld A (1986) Some pyramid techniques for image segmentation. Springer, London, pp 261–271

    Google Scholar 

  114. Rubner Y, Guibas L, Tomasi C (1997) The earth mover’s distance, multi-dimensional scaling, and color-based image retrieval. In: DARPA97, pp 661–668

    Google Scholar 

  115. Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with applications to image databases. In: Proceedings of the 1998 IEEE international conference on computer vision, Bombay, India, pp 59–66

    Google Scholar 

  116. Saarinen K (1994) Color image segmentation by a watershed algorithm and region adjacency graph processing. In: Image processing, 1994. Proceedings. ICIP-94., IEEE international conference, vol 3, pp 1021–1025, DOI:10.1109/ICIP.1994.413690

    Google Scholar 

  117. Saunders S, Chen J, Drummer T, Gustafson E, Brosofske K (2005) Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses. Ecol Complex 2:87–105

    Article  Google Scholar 

  118. Schiffman HR (1996) Sensation and perception: an integrated approach, 4th edn. Wiley, New York

    Google Scholar 

  119. Serra J (2006) A lattice approach to image segmentation. J Math Imaging Vis 24:83–130, DOI:10.1007/s10851-005-3616-0

    Article  MathSciNet  Google Scholar 

  120. Seve R (1991) New formula for the computation of CIE 1976 hue difference. Color Res Appl 16(3):217–218

    Article  Google Scholar 

  121. Seve R (1996) Practical formula for the computation of CIE 1976 hue difference. Color Res Appl21(4):314–314

    Google Scholar 

  122. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell (PAMI) 22(8):888–905

    Article  Google Scholar 

  123. Singh A, Terzopoulos D, Goldgof DB (1998) Deformable models in medical image analysis, 1st edn. IEEE Computer Society Press, Los Alamitos

    Google Scholar 

  124. Sinop AK, Grady L (2007) A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: Computer vision, IEEE international conference on, IEEE Computer Society, Los Alamitos, pp 1–8

    Google Scholar 

  125. Smith J, Chang SF (1995) Single color extraction and image query. In: Image processing, 1995. Proceedings., International conference on, vol 3, pp 528–531, DOI:10.1109/ICIP. 1995.537688

    Google Scholar 

  126. Stricker M, Orengo M (1995) Similarity of color images. In: Storage and retrieval for image and video databases, pp 381–392

    Google Scholar 

  127. Sum KW, Cheung PYS (2007) Boundary vector field for parametric active contours. Pattern Recogn 40:1635–1645, DOI:10.1016/j.patcog.2006.11.006

    Article  MATH  Google Scholar 

  128. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  129. Tang X (1998) Texture information in run-length matrices. IEEE Trans Image Process 7(11):1602–1609, DOI:10.1109/83.725367

    Article  Google Scholar 

  130. Tao Wang IC, Basu A (2009) Fluid vector flow and applications in brain tumor segmentation. IEEE Trans Biomed Eng 56(3):781–789

    Article  Google Scholar 

  131. Terzopoulos D (2003) Deformable models: classic, topology-adaptive and generalized formulations. In: Osher S, Paragios N (eds) Geometric level set methods in imaging, vision, and graphics, chap 2. Springer, New York, pp 21–40

    Chapter  Google Scholar 

  132. Tremeau A, Colantoni P (2000) Regions adjacency graph applied to color image segmentation. IEEE Trans Image Process 9(4):735–744

    Article  Google Scholar 

  133. Turiac M, Ivanovici M, Radulescu T, Buzuloiu V (2010) Variance-driven active contours. In: IPCV, pp 83–86

    Google Scholar 

  134. Turner M, Gardner R, ONeill R (2001) Landscape ecology in theory and practice: Pattern and process. Springer, New York

    Google Scholar 

  135. Urdiales C, Dominguez M, de Trazegnies C, Sandoval F (2010) A new pyramid-based color image representation for visual localization. Image Vis Comput 28(1):78–91, DOI:10.1016/j.imavis.2009.04.014

    Article  Google Scholar 

  136. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE PAMI 13(6):583–598

    Article  Google Scholar 

  137. Viola P, Jones M (2001) Robust real-time object detection. In: 2nd International workshop on statistical and computational theories of vision – Modeling, learning, computing, and sampling. Vancouver, Canada

    Google Scholar 

  138. Voss R (1986) Random fractals: characterization and measurement. Scaling phenomena in disordered systems 10(1):51–61

    Google Scholar 

  139. Willersinn D, Kropatsch W (94) Dual graph contraction for irregular pyramids. In: International conference on pattern recognition, Jerusalem, pp 251–256

    Google Scholar 

  140. Wirtz S, Paulus D (2010) Model-based recognition of 2d objects in perspective images. In: Proceedings of the 10th international conference on pattern recognition and image analysis: new information technologies (PRIA-10-2010), St. Petersburg, Russia, 978-5-7325-0972-4, pp 259–261

    Google Scholar 

  141. Witkin A, Terzopoulos D, Kass M (1987) Signal matching through scale space. Int J Comput Vis 1:133–144

    Article  Google Scholar 

  142. Witkin AP (1983) Scale-space filtering. In: International joint conference on artificial intelligence, pp 1019–1022

    Google Scholar 

  143. Wu Q, Castleman KR (2008) Image segmentation. In: Microscope image processing. Academic, Burlington, pp 159–194, DOI:10.1016/B978-0-12-372578-3.00009-X

    Google Scholar 

  144. Xia Y, Feng D, Zhao R (2006) Morphology-based multifractal estimation for texture segmentation. IEEE Trans Image Process 15(3):614–623, DOI:10.1109/TIP.2005.863029

    Article  Google Scholar 

  145. Xiang S, Pan C, Nie F, Zhang C (2010) Turbopixel segmentation using eigen-images.IEEE Trans Image Process 19(11):3024–3034, DOI:10.1109/TIP.2010.2052268

    Google Scholar 

  146. Xu C, Prince JL (1997) Gradient vector flow: a new external force for snakes. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), IEEE Computer Society, Washington, DC, USA, pp 66–71

    Google Scholar 

  147. Xu C, Prince JL (1998a) Generalized gradient vector flow external forces for active contours. Signal Process 71:131–139

    Article  MATH  Google Scholar 

  148. Xu C, Prince JL (1998b) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MathSciNet  MATH  Google Scholar 

  149. Xu Y, Duygulu P, Saber E, Tekalp AM, Yarman-Vural FT (2003) Object-based image labeling through learning by example and multi-level segmentation. Pattern Recogn 36(6):1407–1423, DOI:10.1016/S0031-3203(02)00250-9

    Article  MATH  Google Scholar 

  150. Yu Sy, Zhang Y, Wang Yg, Yang J (2008) Unsupervised color-texture image segmentation. J Shanghai Jiaotong University (Science) 13:71–75

    Article  Google Scholar 

  151. Zahn CT (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans Comput 20:68–86

    Article  MATH  Google Scholar 

  152. Zhang YJ (2006) Advances in image and video segmentation. IRM Press, USA

    Book  Google Scholar 

  153. Zhao R, Grosky WI (2001) Bridging the semantic gap in image retrieval, in Distributed multimedia databases: Techniques and applications, IGI Global, pp 14–36

    Google Scholar 

Download references

Acknowledgment

We would like to thank Martin Druon, Audrey Ledoux, and Julien Dombre (XLIM-SIC UMR CNRS 6172, Université de Poitiers, France), Diana Stoica and Alexandru Căliman (MIV Imaging Venture, Transilvania University, Braşov, România) for the results they provided and for the fruitful discussions. Image “angel” is courtesy of Centre d’Etudes Supérieurs de Civilisation Médiévale (CESCM), UMR 6223, Poitiers, France, while the melanoma image is courtesy of Dermnet Skin Disease Image Atlas, http://www.dermnet.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Ivanovici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ivanovici, M., Richard, N., Paulus, D. (2013). Color Image Segmentation. In: Fernandez-Maloigne, C. (eds) Advanced Color Image Processing and Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6190-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6190-7_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6189-1

  • Online ISBN: 978-1-4419-6190-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics