Advertisement

Color Image Segmentation

  • Mihai Ivanovici
  • Noël Richard
  • Dietrich Paulus
Chapter

Abstract

Splitting an input image into connected sets of pixels is the purpose of image segmentation. The resulting sets, called regions, are defined based on visual properties extracted by local features. To reduce the gap between the computed segmentation and the one expected by the user, these properties tend to embed the perceived complexity of the regions and sometimes their spatial relationship as well. Therefore, we developed different segmentation approaches, sweeping from classical color texture to recent color fractal features, in order to express this visual complexity and show how it can be used to express homogeneity, distances, and similarity measures. We present several segmentation algorithms, like JSEG and color structure code (CSC), and provide examples for different parameter settings of features and algorithms. The now classical segmentation approaches, like pyramidal segmentation and watershed, are also presented and discussed, as well as the graph-based approaches. For the active contour approach, a diffusion model for color images is proposed. Before drawing the conclusions, we talk about segmentation performance evaluation, including the concepts of closed-loop segmentation, supervised segmentation and quality metrics, i.e., the criteria for assessing the quality of an image segmentation approach. An extensive list of references that covers most of the relevant related literature is provided.

Keywords

Segmentation Region Neighborhood Homogeneity Distance Similarity measure Feature Texture Fractal Pyramidal segmentation CSC Watershed JSEG Active contour Graph-based approaches Closed-loop segmentation Supervised segmentation Quality metric 

Notes

Acknowledgment

We would like to thank Martin Druon, Audrey Ledoux, and Julien Dombre (XLIM-SIC UMR CNRS 6172, Université de Poitiers, France), Diana Stoica and Alexandru Căliman (MIV Imaging Venture, Transilvania University, Braşov, România) for the results they provided and for the fruitful discussions. Image “angel” is courtesy of Centre d’Etudes Supérieurs de Civilisation Médiévale (CESCM), UMR 6223, Poitiers, France, while the melanoma image is courtesy of Dermnet Skin Disease Image Atlas, http://www.dermnet.com.

References

  1. 1.
    Seo N (2008) Tutorial: OpenCV haartraining, Rapid object detection with a cascade of boosted classifiers based on haar-like features, http://note.sonots.com/SciSoftware/haartraining.html
  2. 2.
    Bradski G, Kaehler A, Pisarevsky V (2005) Learning-based computer vision with Intel’s open source computer vision library. Intel Technology Journal, vol. 09, issue 02, May 2005Google Scholar
  3. 3.
    Ameling S, Wirth S, Shevchenko N, Wittenberg T, Paulus D, Münzenmayer C (2009) Detection of lesions in colonoscopic images: a review. In: Dössel O, Schlegel WC (eds) World congress on medical physics and biomedical engineering, vol 25/IV. Springer, Heidelberg, pp 995–998Google Scholar
  4. 4.
    Angulo J, Serra J (2003) Color segmentation by ordered mergings. In: Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, vol 2, pp II – 125–8 vol 3, DOI:10.1109/ICIP.2003.1246632Google Scholar
  5. 5.
    Antonisse HJ (1982) Image segmentation in pyramids. Comput Graph Image Process 19(4):367–383, DOI:10.1016/0146-664X(82)90022-3CrossRefGoogle Scholar
  6. 6.
    Arbelaez PA, Cohen LD (2004) Segmentation d’images couleur par partitions de voronoi - color image segmentation by voronoi partitions. Traitement du signal 21(5):407–421zbMATHGoogle Scholar
  7. 7.
    Bardet JM (1998) Dimension de corrlation locale et dimension de hausdorff des processus vectoriels continus - local correlation dimension and hausdorff dimension of continuous random fields. Comptes Rendus de l’Acadmie des Sciences - Series I - Mathematics 326(5):589–594MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Barnard K, Duygulu P, Freitas OD, Forsyth D (2002) Object recognition as machine translation - part 2: exploiting image data-base clustering models. In: European Conference on Computer VisionGoogle Scholar
  9. 9.
    Barnard K, Duygulu P, Forsyth D, de Freitas N, Blei DM, Jordan MI (2003) Matching words and pictures. J Mach Learn Res 3:1107–1135zbMATHGoogle Scholar
  10. 10.
    Beucher S (1982) Watersheds of functions and picture segmentation. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’82 7:1928–1931Google Scholar
  11. 11.
    Beucher S (1994) Watershed, hierarchical segmentation and waterfall algorithm. In: Serra J, Soille P (eds) Mathematical morphology and its applications to image processing, computational imaging and vision, Kluwer Academic Publishers, Fontainebleau, France, vol 2. pp 69–76Google Scholar
  12. 12.
    Bhanu B, Lee S, Ming J (1991) Closed-loop adaptive image segmentation. In: Computer vision and pattern recognition 1991, Maui, Hawaii, pp 734–735Google Scholar
  13. 13.
    Bister M, Cornelis J, Rosenfeld A (1990) A critical view of pyramid segmentation algorithms. Pattern Recogn Lett 11:605–617, DOI:10.1016/0167-8655(90)90013-RzbMATHCrossRefGoogle Scholar
  14. 14.
    Borsotti M, Campadelli P, Schettini R (1998) Quantitative evaluation of color image segmentation results. Pattern Recogn Lett 19:741–747zbMATHCrossRefGoogle Scholar
  15. 15.
    Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: International conference on computer vision, vol 1, pp 105–112Google Scholar
  16. 16.
    Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698CrossRefGoogle Scholar
  17. 17.
    Caputo B, Vincze M (eds) (2008) Cognitive Vision, 4th International Workshop - Revised Selected Papers, Santorini, Greece, May 12, 2008Google Scholar
  18. 18.
    Cesar Jr RM, Bengoetxea E, Bloch I, Larrañaga P (2005) Inexact graph matching for model-based recognition: evaluation and comparison of optimization algorithms. Pattern Recognition, Volume 38, Issue 11Google Scholar
  19. 19.
    Chanussot J, Lambert P (1998) Total ordering based on space filling curves for multivalued morphology. In: Proceedings of the fourth international symposium on Mathematical morphology and its applications to image and signal processing, Kluwer Academic Publishers, Norwell, MA, USA, ISMM ’98, pp 51–58Google Scholar
  20. 20.
    Chanussot J, Lambert P (1999) Watershed approaches for color image segmentation. In: NSIP’99, pp 129–133Google Scholar
  21. 21.
    Chaudhuri B, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17(1):72–77CrossRefGoogle Scholar
  22. 22.
    Chen J, Pappas T, Mojsilovic A, Rogowitz B (2005) Adaptive perceptual color-texture image segmentation. IEEE Trans Image Process 14(10):1524–1536CrossRefGoogle Scholar
  23. 23.
    Chi CY, Tai SC (2006) Perceptual color contrast based watershed for color image segmentation. In: Systems, man and cybernetics, 2006. SMC ’06. IEEE international conference on, vol 4, pp 3548–3553Google Scholar
  24. 24.
    Commission Internationale de l’Eclairage (CIE) (2008) Colorimetry - part 4: Cie 1976 l*a*b* colour spaces. Tech. rep., CIEGoogle Scholar
  25. 25.
    Commission Internationale de l’Eclairage (CIE) (1995) Industrial colour-difference evaluation. CIE Publication 116Google Scholar
  26. 26.
    Commission Internationale de l’Eclairage (CIE) (2001) Technical report: improvement to industrial colordifference evaluation. CIE Publication 142Google Scholar
  27. 27.
    Clarke FJJ, McDonald R, Rigg B (1984) Modification to the JPC79 Colour–difference Formula. J Soc Dyers Colourists 100(4):128–132CrossRefGoogle Scholar
  28. 28.
    Cohen LD (1991) On active contour models and balloons. CVGIP: Image Underst 53:211–218, DOI:10.1016/1049-9660(91)90028-NzbMATHCrossRefGoogle Scholar
  29. 29.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619, DOI:10.1109/34.1000236CrossRefGoogle Scholar
  30. 30.
    Cordella LP, Foggia P, Sansone C, Vento M (2001) An improved algorithm for matching large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based representations in pattern recognition, Cuen, pp 149–159Google Scholar
  31. 31.
    Couprie M, Bertrand G (1997) Topological gray-scale watershed transform. In: Proceedings of SPIE vision geometry V, vol 3168, pp 136–146Google Scholar
  32. 32.
    Cousty J, Bertrand G, Najman L, Couprie M (2009) Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans Pattern Anal Mach Intell 31(8):1362–1374CrossRefGoogle Scholar
  33. 33.
    Deng Y, Manjunath BS (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell (PAMI ’01) 23(8):800–810Google Scholar
  34. 34.
    Deng Y, Manjunath BS, Shin H (1999) Color image segmentation. In: Proc. IEEE computer society conference on computer vision and pattern recognition CVPR’99, Fort Collins, CO, vol 2, pp 446–51Google Scholar
  35. 35.
    Desolneux A, Moisan L, Morel JM (2003) Computational gestalts and perception thresholds. J Physiol 97:311–324Google Scholar
  36. 36.
    DIN 6176. Farbmetrische Bestimmung von Farbabständen bei Körperfarben nach der DIN99-Formel (Colorimetric evaluation of colour differences of surface colours according to DIN99 formula), DIN Deutsches Institut für Normung e. V., Burggrafenstraße 6, 10787 Berlin, GermanyGoogle Scholar
  37. 37.
    Dombre J (2003) Multi-scale representation systems for indexing and restoring color medieval archives, PhD thesis, University of Poitiers, France, http://tel.archives-ouvertes.fr/tel-00006234/
  38. 38.
    Domon M, Honda E (1999) Correlation of measured fractal dimensions with lacunarities in computer-generated three-dimensional images of cantor sets and those of fractal brownian motion. In: FORMA, vol 14, pp 249–263Google Scholar
  39. 39.
    Duygulu P, Barnard K, Freitas JFG de, Forsyth DA (2002) Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of the 7th European conference on computer vision-part IV, Springer-Verlag, London, UK, UK, ECCV 02, pp 97–112Google Scholar
  40. 40.
    Edgar G (1990) Measure, topology and fractal geometry. Springer, New YorkzbMATHGoogle Scholar
  41. 41.
    Everingham M, Zisserman A, Williams C, Van Gool L, Allan M, Bishop C, Chapelle O, Dalal N, Deselaers T, Dork G, Duffner S, Eichhorn J, Farquhar J, Fritz M, Garcia C, Griffiths T, Jurie F, Keysers D, Koskela M, Laaksonen J, Larlus D, Leibe B, Meng H, Ney H, Schiele B, Schmid C, Seemann E, Shawe-Taylor J, Storkey A, Szedmak S, Triggs B, Ulusoy I, Viitaniemi V, Zhang J (2006) The 2005 pascal visual object classes challenge. In: Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising tectual entailment, Lecture notes in computer science, vol 3944. Springer, Berlin, pp 117–176Google Scholar
  42. 42.
    Falconer K (1990) Fractal Geometry, mathematical foundations and applications. Wiley, New YorkzbMATHGoogle Scholar
  43. 43.
    Feagin R (2005) Heterogeneity versus homogeneity: a conceptual and mathematical theory in terms of scale-invariant and scale-covariant distributions. Ecol Complex 2:339–356CrossRefGoogle Scholar
  44. 44.
    Ford L, Fulkerson D (1962) Flows in networks. Princeton University Press, PrincetonzbMATHGoogle Scholar
  45. 45.
    Fu K, Mui J (1981) A survey on image segmentation. Pattern Recogn 13(1):3–16MathSciNetCrossRefGoogle Scholar
  46. 46.
    Funt BV, Finlayson GD (1995) Color constant color indexing. IEEE Trans Pattern Anal Mach Intell 17:522–529CrossRefGoogle Scholar
  47. 47.
    Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–179, DOI:10.1016/S0146-664X(75)80008-6CrossRefGoogle Scholar
  48. 48.
    Gil D, Radeva P (2003) Curvature vector flow to assure convergent deformable models for shape modelling. In: EMMCVPR, pp 357–372Google Scholar
  49. 49.
    Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc., NJGoogle Scholar
  50. 50.
    Hanbury A (2003) A 3d-polar coordinate colour representation well adapted to image analysis. In: Proceedings of the 13th Scandinavian conference on image analysis, Springer, Berlin, Heidelberg, SCIA’03, pp 804–811Google Scholar
  51. 51.
    Hanson A, Riseman E (1978) Visions: a computer system for interpreting scenes. In: Hanson A, Riseman E (eds) Computer vision systems. Academic, New York, pp 303–333Google Scholar
  52. 52.
    Haralick R, Shapiro L (1985) Image segmentation techniques. Comput Vis Graph Image Process 29(1):100–132CrossRefGoogle Scholar
  53. 53.
    Harris C, Stephens M (1988) A Combined Corner and Edge Detection, in Proceedings of the 4th Alvey Vision Conference, volume 15, pp 147–151Google Scholar
  54. 54.
    He L, Han CY, Everding B, Wee WG (2004) Graph matching for object recognition and recovery. Pattern recogn 37:1557–1560CrossRefGoogle Scholar
  55. 55.
    Hemery B, Laurent H, Rosenberger C (2009) Evaluation metric for image understanding. In: ICIP, pp 4381–4384Google Scholar
  56. 56.
    Hemery B, Laurent H, Rosenberger C (2010) Subjective evaluation of image understanding results. In: European Signal Processing Conference (EUSIPCO), August 23–27, Aalborg, DenmarkGoogle Scholar
  57. 57.
    Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of the 1997 conference on computer vision and pattern recognition (CVPR ’97), IEEE Computer Society, Washington, CVPR ’97, pp 762–768Google Scholar
  58. 58.
    Huang ZK, Liu DH (2007) Segmentation of color image using em algorithm in hsv color space. In: Information acquisition, 2007. ICIA ’07. International conference on, pp 316–319, DOI:10.1109/ICIA.2007.4295749Google Scholar
  59. 59.
    Ionescu M, Ralescu A (2004) Fuzzy hamming distance in a content-based image retrieval system. In: Fuzzy systems, 2004. Proceedings. 2004 IEEE international conference on, vol 3, pp 1721–1726Google Scholar
  60. 60.
    Ivanovici M, Richard N (2009a) Fractal dimension of colour fractal images. IEEE TransImage Process 20(1):227–235MathSciNetCrossRefGoogle Scholar
  61. 61.
    Ivanovici M, Richard N (2009b) The lacunarity of colour fractal images. In: ICIP’09 - IEEE international conference on image processing, Cairo, Egypt, pp 453–456Google Scholar
  62. 62.
    Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Inc., NJ, USAzbMATHGoogle Scholar
  63. 63.
    Jing X, Jian W, Feng Y, Zhi-ming C (2008) A level set method for color image segmentation based on bayesian classifier. In: Computer science and software engineering, 2008 International conference on, vol 2, pp 886–890, DOI:10.1109/CSSE.2008.1193Google Scholar
  64. 64.
    Jolion JM, Montanvert A (1991) The adaptive pyramid: a framework for 2d image analysis. CVGIP: Image underst 55:339–348CrossRefGoogle Scholar
  65. 65.
    Jones M, Viola P (2003) Fast multi-view face detection, Technical Report, Mitsubishi Electric Research LaboratoriesGoogle Scholar
  66. 66.
    Kapur T, Grimson WEL, Kikinis R (1995) Segmentation of brain tissue from mr images. In: Proceedings of the first international conference on computer vision, virtual reality and robotics in medicine, Springer, London, UK, CVRMed ’95, pp 429–433Google Scholar
  67. 67.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331CrossRefGoogle Scholar
  68. 68.
    Keller J, Chen S (1989) Texture description and segmentation through fractal geometry. Comput Vis Graph Image process 45:150–166CrossRefGoogle Scholar
  69. 69.
    Kiser C, Musial C, Sen P (2008) Accelerating Active Contour Algorithms with the Gradient Diffusion Field. In: Proceedings of international conference on pattern recognition (ICPR) 2008Google Scholar
  70. 70.
    Kolasa J, Rollo C (1991) chap The heterogeneity of heterogeneity: a glossary. Ecological heterogeneity (Ecological studies), 1st edn. Springer, New-York, pp 1–23Google Scholar
  71. 71.
    Komati KS, Salles EO, Filho MS (2009) Fractal-jseg: jseg using an homogeneity measurement based on local fractal descriptor. Graphics, patterns and images, SIBGRAPI Conference on 0:253–260Google Scholar
  72. 72.
    Kropatsch W (1995) Building irregular pyramids by dual-graph contraction. Vision Image Signal Process, IEE Proc - 142(6):366–374, DOI:10.1049/ip-vis:19952115CrossRefGoogle Scholar
  73. 73.
    Kwatra V, Schödl A, Essa I, Turk G, Bobick A (2003) Graphcut textures: image and video synthesis using graph cuts. In: ACM SIGGRAPH 2003 Papers, ACM, New York, SIGGRAPH ’03, pp 277–286Google Scholar
  74. 74.
    Lay J, Guan L (2004) Retrieval for color artistry concepts. IEEE Trans Image Process 13(3):326–339CrossRefGoogle Scholar
  75. 75.
    Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) Turbopixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell: 31(12):2290–2297CrossRefGoogle Scholar
  76. 76.
    Li B, Loehle C (1995) Wavelet analysis of multiscale permeabilities in the subsurface. Geophys Res Lett 22(23):3123–3126CrossRefGoogle Scholar
  77. 77.
    Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73(2):280–284CrossRefGoogle Scholar
  78. 78.
    Liu J, Yang YH (1994) Multiresolution color image segmentation. IEEE Trans Pattern Anal Mach Intell 16:689–700, DOI:10.1109/34.297949CrossRefGoogle Scholar
  79. 79.
    MacAdam D (1942) Visual sensitivities to color differences in daylight. JOSA 32(5):247–273CrossRefGoogle Scholar
  80. 80.
    Mandelbrot B (1982) The fractal geometry of nature. W.H. Freeman and Co, New-YorkGoogle Scholar
  81. 81.
    Marfil R, Molina-Tanco L, Bandera A, Rodríguez J, Sandoval F (2006) Pyramid segmentation algorithms revisited. Pattern Recogn 39:1430–1451zbMATHCrossRefGoogle Scholar
  82. 82.
    Marfil R, Rodrguez JA, Bandera A, Sandoval F (2004) Bounded irregular pyramid: a new structure for color image segmentation. Pattern Recogn 37(3):623–626, DOI: 10.1016/j.patcog.2003.08.012CrossRefGoogle Scholar
  83. 83.
    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Computer vision, 2001. ICCV 2001. Proceedings. Eighth IEEE international conference on, vol 2, pp 416–423Google Scholar
  84. 84.
    Martin V, Thonnat M, Maillot N (2006) A learning approach for adaptive image segmentation. In: Proceedings of the fourth IEEE international conference on computer vision systems, IEEE Computer Society, Washington, pp 40–48Google Scholar
  85. 85.
    Meyer F (1992) Color image segmentation. In: Image processing and its applications, International conference on, pp 303–306Google Scholar
  86. 86.
    Micusik B, Hanbury A (2005) Supervised texture detection in images. In: Conference on computer analysis of images and patterns (CAIP), pp. 441–448, Versailles, FranceGoogle Scholar
  87. 87.
    Mojsilovic A, Hu H, Soljanin E (2002) Extraction of perceptually important colors and similarity measurement for image matching, retrieval and analysis. IEEE Trans Image Process 11(11):1238–1248MathSciNetCrossRefGoogle Scholar
  88. 88.
    Moravec H (1980) Obstacle avoidance and navigation in the real world by a seeing robot rover. In: tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University, CMU-RI-TR-80-03Google Scholar
  89. 89.
    Mortensen EN, Barrett WA (1998) Interactive segmentation with intelligent scissors. In: Graphical models and image processing, pp 349–384Google Scholar
  90. 90.
    Nachlieli H, Shaked D (2011) Measuring the quality of quality measures. IEEE Trans Image Process 20(1):76–87MathSciNetCrossRefGoogle Scholar
  91. 91.
    Nadenau M (2000) Integration of human color vision models into high quality image compression, PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), http://infoscience.epfl.ch/record/32772
  92. 92.
    Ozkan D, Duygulu P (2006) Finding people frequently appearing in news. In: Sundaram H, Naphade M, Smith J, Rui Y (eds) Image and video retrieval, lecture notes in computer science, vol 4071. Springer, Berlin, pp 173–182CrossRefGoogle Scholar
  93. 93.
    Pailloncy JG, Deruyver A, Jolion JM (1999) From pixels to predicates revisited in the graphs framework. In: 2nd international workshop on graph based representations,GbR99Google Scholar
  94. 94.
    Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294CrossRefGoogle Scholar
  95. 95.
    Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  96. 96.
    Park HK, Chung MJ (2002) Exernal force of snakes: virtual electric field. Electron Lett 38(24):1500–1502MathSciNetCrossRefGoogle Scholar
  97. 97.
    Pass G, Zabih R, Miller J (1996) Comparing images using color coherence vectors. In: ACM multimedia, pp 65–73Google Scholar
  98. 98.
    Pauli H (1976) Proposed extension of the CIE recommendation on Uniform color spaces, color difference equations, and metric color terms. JOSA 66(8):866–867CrossRefGoogle Scholar
  99. 99.
    Paulus D, Hornegger J, Niemann H (1999) Software engineering for image processing and analysis. In: Jähne B, Gei”sler P, Hau”secker H (eds) Handbook of computer vision and applications, Academic, San Diego, pp 77–103Google Scholar
  100. 100.
    Phillips I, Chhabra A (1999) Empirical performance evaluation of graphics recognition systems. IEEE Trans Pattern Anal Mach Intell 21(9):849–870, DOI:10.1109/34.790427CrossRefGoogle Scholar
  101. 101.
    Plotnick R, Gardner R, O’Neill R (1993) Lacunarity indices as measures of landscape texture. Lanscape Ecol 8(3):201–211CrossRefGoogle Scholar
  102. 102.
    Pratt WK (2001) Digital image processing: PIKS Inside, 3rd edn. Wiley, New YorkGoogle Scholar
  103. 103.
    Prewer D, Kitchen L (2001) Soft image segmentation by weighted linked pyramid. Pattern Recogn Lett 22:123–132zbMATHCrossRefGoogle Scholar
  104. 104.
    Priese L, Rehrmann V (1993) On hierarchical color segmentation and applications. In: Proceedings, Proceedings of the conference on computer vision and pattern recognition, pp 633–634Google Scholar
  105. 105.
    Randall J, Guan L, Li W, XZhang (2008) The hcm for perceptual image segmentation. Neurocomputing 71(10-12):1966–1979Google Scholar
  106. 106.
    Renyi A (1955) On a new axiomatic theory of probability. Acta Mathematica Hungarica 6(3-4):285–335MathSciNetzbMATHGoogle Scholar
  107. 107.
    Rezaee M, van der Zwet P, Lelieveldt B, van der Geest R, Reiber J (2000) A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Trans Image Process 9(7):1238–1248, DOI:10.1109/83.847836CrossRefGoogle Scholar
  108. 108.
    Richard N, Bringier B, Rollo E (2005) Integration of human perception for color texture management. In: Signals, circuits and systems, 2005. ISSCS 2005. International symposium on, vol 1, pp 207–210Google Scholar
  109. 109.
    Roerdink JB, Meijster A (2001) The wastershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41:187–228MathSciNetGoogle Scholar
  110. 110.
    Rosenfeld A (1970) Connectivity in digital pictures. J ACM 17(1):146–160MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Rosenfeld A (1974) Adjacency in digital pictures. Inform Contr 26(1):24–33MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Rosenfeld A (1979) Digital topology. Am Math Mon 86(8):621–630MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Rosenfeld A (1986) Some pyramid techniques for image segmentation. Springer, London, pp 261–271Google Scholar
  114. 114.
    Rubner Y, Guibas L, Tomasi C (1997) The earth mover’s distance, multi-dimensional scaling, and color-based image retrieval. In: DARPA97, pp 661–668Google Scholar
  115. 115.
    Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with applications to image databases. In: Proceedings of the 1998 IEEE international conference on computer vision, Bombay, India, pp 59–66Google Scholar
  116. 116.
    Saarinen K (1994) Color image segmentation by a watershed algorithm and region adjacency graph processing. In: Image processing, 1994. Proceedings. ICIP-94., IEEE international conference, vol 3, pp 1021–1025, DOI:10.1109/ICIP.1994.413690Google Scholar
  117. 117.
    Saunders S, Chen J, Drummer T, Gustafson E, Brosofske K (2005) Identifying scales of pattern in ecological data: a comparison of lacunarity, spectral and wavelet analyses. Ecol Complex 2:87–105CrossRefGoogle Scholar
  118. 118.
    Schiffman HR (1996) Sensation and perception: an integrated approach, 4th edn. Wiley, New YorkGoogle Scholar
  119. 119.
    Serra J (2006) A lattice approach to image segmentation. J Math Imaging Vis 24:83–130, DOI:10.1007/s10851-005-3616-0MathSciNetCrossRefGoogle Scholar
  120. 120.
    Seve R (1991) New formula for the computation of CIE 1976 hue difference. Color Res Appl 16(3):217–218CrossRefGoogle Scholar
  121. 121.
    Seve R (1996) Practical formula for the computation of CIE 1976 hue difference. Color Res Appl21(4):314–314Google Scholar
  122. 122.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell (PAMI) 22(8):888–905CrossRefGoogle Scholar
  123. 123.
    Singh A, Terzopoulos D, Goldgof DB (1998) Deformable models in medical image analysis, 1st edn. IEEE Computer Society Press, Los AlamitosGoogle Scholar
  124. 124.
    Sinop AK, Grady L (2007) A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: Computer vision, IEEE international conference on, IEEE Computer Society, Los Alamitos, pp 1–8Google Scholar
  125. 125.
    Smith J, Chang SF (1995) Single color extraction and image query. In: Image processing, 1995. Proceedings., International conference on, vol 3, pp 528–531, DOI:10.1109/ICIP. 1995.537688Google Scholar
  126. 126.
    Stricker M, Orengo M (1995) Similarity of color images. In: Storage and retrieval for image and video databases, pp 381–392Google Scholar
  127. 127.
    Sum KW, Cheung PYS (2007) Boundary vector field for parametric active contours. Pattern Recogn 40:1635–1645, DOI:10.1016/j.patcog.2006.11.006zbMATHCrossRefGoogle Scholar
  128. 128.
    Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32CrossRefGoogle Scholar
  129. 129.
    Tang X (1998) Texture information in run-length matrices. IEEE Trans Image Process 7(11):1602–1609, DOI:10.1109/83.725367CrossRefGoogle Scholar
  130. 130.
    Tao Wang IC, Basu A (2009) Fluid vector flow and applications in brain tumor segmentation. IEEE Trans Biomed Eng 56(3):781–789CrossRefGoogle Scholar
  131. 131.
    Terzopoulos D (2003) Deformable models: classic, topology-adaptive and generalized formulations. In: Osher S, Paragios N (eds) Geometric level set methods in imaging, vision, and graphics, chap 2. Springer, New York, pp 21–40CrossRefGoogle Scholar
  132. 132.
    Tremeau A, Colantoni P (2000) Regions adjacency graph applied to color image segmentation. IEEE Trans Image Process 9(4):735–744CrossRefGoogle Scholar
  133. 133.
    Turiac M, Ivanovici M, Radulescu T, Buzuloiu V (2010) Variance-driven active contours. In: IPCV, pp 83–86Google Scholar
  134. 134.
    Turner M, Gardner R, ONeill R (2001) Landscape ecology in theory and practice: Pattern and process. Springer, New YorkGoogle Scholar
  135. 135.
    Urdiales C, Dominguez M, de Trazegnies C, Sandoval F (2010) A new pyramid-based color image representation for visual localization. Image Vis Comput 28(1):78–91, DOI:10.1016/j.imavis.2009.04.014CrossRefGoogle Scholar
  136. 136.
    Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE PAMI 13(6):583–598CrossRefGoogle Scholar
  137. 137.
    Viola P, Jones M (2001) Robust real-time object detection. In: 2nd International workshop on statistical and computational theories of vision – Modeling, learning, computing, and sampling. Vancouver, CanadaGoogle Scholar
  138. 138.
    Voss R (1986) Random fractals: characterization and measurement. Scaling phenomena in disordered systems 10(1):51–61Google Scholar
  139. 139.
    Willersinn D, Kropatsch W (94) Dual graph contraction for irregular pyramids. In: International conference on pattern recognition, Jerusalem, pp 251–256Google Scholar
  140. 140.
    Wirtz S, Paulus D (2010) Model-based recognition of 2d objects in perspective images. In: Proceedings of the 10th international conference on pattern recognition and image analysis: new information technologies (PRIA-10-2010), St. Petersburg, Russia, 978-5-7325-0972-4, pp 259–261Google Scholar
  141. 141.
    Witkin A, Terzopoulos D, Kass M (1987) Signal matching through scale space. Int J Comput Vis 1:133–144CrossRefGoogle Scholar
  142. 142.
    Witkin AP (1983) Scale-space filtering. In: International joint conference on artificial intelligence, pp 1019–1022Google Scholar
  143. 143.
    Wu Q, Castleman KR (2008) Image segmentation. In: Microscope image processing. Academic, Burlington, pp 159–194, DOI:10.1016/B978-0-12-372578-3.00009-XGoogle Scholar
  144. 144.
    Xia Y, Feng D, Zhao R (2006) Morphology-based multifractal estimation for texture segmentation. IEEE Trans Image Process 15(3):614–623, DOI:10.1109/TIP.2005.863029CrossRefGoogle Scholar
  145. 145.
    Xiang S, Pan C, Nie F, Zhang C (2010) Turbopixel segmentation using eigen-images.IEEE Trans Image Process 19(11):3024–3034, DOI:10.1109/TIP.2010.2052268Google Scholar
  146. 146.
    Xu C, Prince JL (1997) Gradient vector flow: a new external force for snakes. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), IEEE Computer Society, Washington, DC, USA, pp 66–71Google Scholar
  147. 147.
    Xu C, Prince JL (1998a) Generalized gradient vector flow external forces for active contours. Signal Process 71:131–139zbMATHCrossRefGoogle Scholar
  148. 148.
    Xu C, Prince JL (1998b) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    Xu Y, Duygulu P, Saber E, Tekalp AM, Yarman-Vural FT (2003) Object-based image labeling through learning by example and multi-level segmentation. Pattern Recogn 36(6):1407–1423, DOI:10.1016/S0031-3203(02)00250-9zbMATHCrossRefGoogle Scholar
  150. 150.
    Yu Sy, Zhang Y, Wang Yg, Yang J (2008) Unsupervised color-texture image segmentation. J Shanghai Jiaotong University (Science) 13:71–75CrossRefGoogle Scholar
  151. 151.
    Zahn CT (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans Comput 20:68–86zbMATHCrossRefGoogle Scholar
  152. 152.
    Zhang YJ (2006) Advances in image and video segmentation. IRM Press, USACrossRefGoogle Scholar
  153. 153.
    Zhao R, Grosky WI (2001) Bridging the semantic gap in image retrieval, in Distributed multimedia databases: Techniques and applications, IGI Global, pp 14–36Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mihai Ivanovici
    • 1
  • Noël Richard
    • 2
  • Dietrich Paulus
    • 3
  1. 1.MIV Imaging Venture Laboratory, Department of Electronics and ComputersTransilvania University BraşovBrasovRomânia
  2. 2.Laboratory XLIM-SIC, UMR CNRS 7252University of PoitiersPoitiersFrance
  3. 3.ComputervisualistikUniversität Koblenz-LandauKoblenzGermany

Personalised recommendations