Colour Difference Evaluation

  • Manuel Melgosa
  • Alain Trémeau
  • Guihua Cui


For a pair of homogeneous colour samples or two complex images viewed under specific conditions, colour-difference formulas try to predict the visually perceived (subjective) colour difference starting from instrumental (objective) colour measurements. The history related to the five up-to-date CIE-recommended colour-difference formulas is reviewed, with special emphasis on the structure and performance of the last one, CIEDE2000. Advanced colour-difference formulas with an associated colour space (e.g., DIN99d, CAM02, Euclidean OSA-UCS, etc.) are also discussed. Different indices proposed to measure the performance of a given colour-difference formula (e.g., PF/3, STRESS, etc.) are reviewed. Among current trends on colour-difference evaluation, it can be mentioned the research activities carried out by different CIE Technical Committees (e.g., CIE TC’s 1-55, 1-57, 1-63, 1-81 and 8-02), the need of new reliable experimental datasets, the development of colour-difference formulas based on IPT and colour-appearance models, and the concept of “total differences,” which considers the interactions between colour properties and other object attributes like texture, translucency, and gloss.


Colour-difference formula Uniform colour space CIELUV CIELAB CIE94 CIEDE2000 DIN99 CAM02-SCD CAM02-LCD CAM02-UCS S-CIELAB IPT PF/3 STRESS 



To our CIMET Erasmus-Mundus Master students ( enrolled in the “Advanced Colorimetry” course during the academic years 2008–2009 and 2009–2010, who contributed with their questions and comments to improve our knowledge in the field of colour-difference evaluation. This work was partly supported by research project FIS2010–19839, Ministerio de Educación y Ciencia (Spain), with European Regional Development Fund (ERDF).


  1. 1.
    CIE Publication 101 (1993) Parametric effects in colour-difference evaluation. CIE Central Bureau, ViennaGoogle Scholar
  2. 2.
    Witt K (1995) CIE guidelines for coordinated future work on industrial colour-difference evaluation. Color Res Appl 20:399–403CrossRefGoogle Scholar
  3. 3.
    Kuehni RG (2009) Variability in estimation of suprathreshold small color differences. Color Res Appl 34:367–374CrossRefGoogle Scholar
  4. 4.
    MacAdam DL (1942) Visual sensitivities to color differences in daylight. J Opt Soc Am 32:247–274CrossRefGoogle Scholar
  5. 5.
    Shen S, Berns RS (2011) Color-difference formula performance for several datasets of small color differences based on visual uncertainty. Color Res Appl 36:15–26CrossRefGoogle Scholar
  6. 6.
    Berns RS, Alman DH, Reniff L, Snyder GD, Balonon-Rosen MR (1991) Visual determination of suprathreshold color-difference tolerances using probit analysis. Color Res Appl 16:297–316CrossRefGoogle Scholar
  7. 7.
    Guan S, Luo MR (1999) Investigation of parametric effects using small colour-differences. Color Res Appl 24:331–343CrossRefGoogle Scholar
  8. 8.
    ISO 105-A02:1993 Tests for Colour Fastness-Part A02: Gray Scale for Assessing Change in Colour, International Organization for Standardization Geneva, Switzerland.
  9. 9.
    AATCC Committee RA36, AATCC Evaluation Procedure 1 (2007) Gray scale for color change. AATCC, NC, Research Triangle Park.
  10. 10.
    Fastness Tests Co-ordinating Committee (F.T.C.C.) Publication XI (1953) The development of the geometric grey scales for fastness assessment. J Soc Dyers Colour 69:404–409Google Scholar
  11. 11.
    Cárdenas LM, Shamey R, Hinks D (2009) Development of a novel linear gray scale for visual assessment of small color differences. AATCC Review 9:42–47Google Scholar
  12. 12.
    Montag ED, Wilber DC (2003) A comparison of color stimuli and gray-scale methods of color difference scaling. Color Res Appl 28:36–44CrossRefGoogle Scholar
  13. 13.
    Berns RS (2008) Generalized industrial color-difference based on multi-stage color vision and line-element integration. Óptica Pur Appl 41:301–311Google Scholar
  14. 14.
    CIE Publication 159:2004 (2004) A colour appearance model for colour management systems: CIECAM02. CIE Central Bureau, ViennaGoogle Scholar
  15. 15.
    Fairchild MD (2005) Colour Appearance Models, 2nd edn. Wiley, New YorkGoogle Scholar
  16. 16.
    Luo MR (2002) Development of colour-difference formulae. Rev Prog Color 32:28–39CrossRefGoogle Scholar
  17. 17.
    McDonald R (1982) A review of the relationship between visual and instrumental assessment of colour difference, part 1. J Oil Colour Chem Assoc 65:43–53Google Scholar
  18. 18.
    McDonald R (1982) A review of the relationship between visual and instrumental assessment of colour difference, part 2. J Oil Colour Chem Assoc 65:93–106Google Scholar
  19. 19.
    Wit K (2007) CIE color difference metrics. In: Schanda J (ed) Chapter 4 in Colorimetry- Understanding the CIE System, Wiley, New YorkGoogle Scholar
  20. 20.
    CIE Publication 13.3 (1995) Method of measuring and specifying colour rendering properties of light sources. CIE Central Bureau, ViennaGoogle Scholar
  21. 21.
    CIE 15:2004 (2004) Colorimetry, 3rd edn. CIE Central Bureau, ViennaGoogle Scholar
  22. 22.
    Robertson AR (1990) Historical development of CIE recommended color difference equations. Color Res Appl 15:167–170CrossRefGoogle Scholar
  23. 23.
    Kuehni RG (1990) Industrial color-difference: progress and problems. Color Res Appl 15:261–265CrossRefGoogle Scholar
  24. 24.
    Melgosa M (2000) Testing CIELAB-based color-difference formulas. Color Res Appl 25:49–55CrossRefGoogle Scholar
  25. 25.
    Clarke FJJ, McDonald R, Rigg B (1984) Modification to the JPC79 colour-difference formula. J Soc Dyers Colour 100:128–132CrossRefGoogle Scholar
  26. 26.
    Luo MR, Rigg B (1987) BFD(l:c) colour-difference formula. Part 1 – Development of the formula. J Soc Dyers Colour 103:86–94CrossRefGoogle Scholar
  27. 27.
    CIE Publication 116 (1995) Industrial colour-difference evaluation. CIE Central Bureau, ViennaGoogle Scholar
  28. 28.
    McDonald R (1974) The effect of non-uniformity in the ANLAB color space on the interpretation of visual colour differences. J Soc Dyers Colour 90:189–198CrossRefGoogle Scholar
  29. 29.
    CIE Publication 142 (2001) Improvement to industrial colour-difference evaluation. CIE Central Bureau, ViennaGoogle Scholar
  30. 30.
    Luo MR, Cui G, Rigg B (2001) The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res Appl 26:340–350CrossRefGoogle Scholar
  31. 31.
    Melgosa M, Huertas R, Berns RS (2004) Relative significance of the terms in the CIEDE2000 and CIE94 color-difference formulas. J Opt Soc Am A 21:2269–2275CrossRefGoogle Scholar
  32. 32.
    Sharma G, Wu W, Dalal EN (2005) The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30:21–30CrossRefGoogle Scholar
  33. 33.
    Kuehni RG (2002) CIEDE2000, milestone or final answer? Color Res Appl 27:126–128CrossRefGoogle Scholar
  34. 34.
    DIN (2000) Farbmetrische Bestimmung von Farbabständen bei Köroerfarben nach der DIN-99-Formel. DIN Deutsche Institut für Normung e.V, BerlinGoogle Scholar
  35. 35.
    Cui G, Luo MR, Rigg B, Roesler G, Witt K (2002) Uniform colour spaces based on the DIN99 colour-difference formula. Color Res Appl 27:282–290CrossRefGoogle Scholar
  36. 36.
    Kuehni RG (1999) Towards an improved uniform color space. Color Res Appl 24:253–265CrossRefGoogle Scholar
  37. 37.
    Luo MR, Cui G, Li C (2006) Uniform colour spaces based on CIECAM02 colour appearance model. Color Res Appl 31:320–330CrossRefGoogle Scholar
  38. 38.
    Xue Y (2008) Uniform color spaces based on CIECAM02 and IPT color difference equations. MD Thesis, Rochester Institute of Technology, Rochester, NYGoogle Scholar
  39. 39.
    MacAdam DL (1974) Uniform color scales. J Opt Soc Am 64:1691–1702CrossRefGoogle Scholar
  40. 40.
    Huertas R, Melgosa M, Oleari C (2006) Performance of a color-difference formula based on OSA-UCS space using small-medium color differences. J Opt Soc Am A 23:2077–2084CrossRefGoogle Scholar
  41. 41.
    Oleari C, Melgosa M, Huertas R (2009) Euclidean color-difference formula for small-medium color differences in log-compressed OSA-UCS space. J Opt Soc Am A 26:121–134CrossRefGoogle Scholar
  42. 42.
    Ebner F, Fairchild MD (1998) Development and testing of a color space (IPT) with improved hue uniformity. In: Proceedings of 6th Color Imaging Conference, 8–13, IS&T, Scottsdale, AZGoogle Scholar
  43. 43.
    Shen S (2008) Color difference formula and uniform color space modeling and evaluation. MD Thesis, Rochester Institute of Technology, Rochester, NYGoogle Scholar
  44. 44.
    Thomsen K (2000) A Euclidean color space in high agreement with the CIE94 color difference formula. Color Res Appl 25:64–65CrossRefGoogle Scholar
  45. 45.
    Urban P, Rosen MR, Berns RS, Schleicher D (2007) Embedding non-euclidean color spaces into Euclidean color spaces with minimal isometric disagreement. J Opt Soc Am A 24:1516–1528CrossRefGoogle Scholar
  46. 46.
    Alder C, Chaing KP, Chong TF, Coates E, Khalili AA, Rigg B (1982) Uniform chromaticity scales – New experimental data. J Soc Dyers Colour 98:14–20CrossRefGoogle Scholar
  47. 47.
    Schultze W The usefulness of colour-difference formulae for fixing colour tolerances. In: Proceedings of AIC/Holland (Soesterberg 1972) 254–265Google Scholar
  48. 48.
    McLaren K (1970) Colour passing—Visual or instrumental? J Soc Dyers Colour 86:389–392CrossRefGoogle Scholar
  49. 49.
    Alman DH, Berns RS, Snyder GD, Larsen WA (1989) Performance testing of color-difference metrics using a color tolerance dataset. Color Res Appl 14:139–151CrossRefGoogle Scholar
  50. 50.
    Gibert JM, Dagà JM, Gilabert EJ, Valldeperas J and the Colorimetry Group (2005) Evaluation of colour difference formulae. Color Technol 121:147–152CrossRefGoogle Scholar
  51. 51.
    Attridge GG, Pointer MR (2000) Some aspects of the visual scaling of large colour differences-II. Color Res. Appl 25:116–122CrossRefGoogle Scholar
  52. 52.
    García PA, Huertas R, Melgosa M, Cui G (2007) Measurement of the relationship between perceived and computed color differences. J Opt Soc Am A 24:1823–1829CrossRefGoogle Scholar
  53. 53.
    Coxon APM (1982) The user’s guide to multidimensional scaling. London, HeinemannGoogle Scholar
  54. 54.
    Melgosa M, García PA, Gómez-Robledo L, Shamey R, Hinks D, Cui G, Luo MR (2011) Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments. J. Opt. Soc. Am. A. 28:949–953CrossRefGoogle Scholar
  55. 55.
    Melgosa M, Huertas R, Berns RS (2008) Performance of recent advanced color-difference formulas using the standardized residual sum of squares index. J. Opt. Soc. Am. A 25:1828–1834CrossRefGoogle Scholar
  56. 56.
    Morillas S, Gómez-Robledo L, Huertas R, Melgosa M (2009) Fuzzy analysis for detection of inconsistent data in experimental datasets employed at the development of the CIEDE2000 colour difference formula. J Mod Optic 56:1447–1456CrossRefGoogle Scholar
  57. 57.
    Wandell BA (1996) Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform background in dichoptic matching. Vis Res 35:239–254Google Scholar
  58. 58.
    Zhang XM, Wandell BA (1996) A spatial extension to CIELAB for digital color image reproduction. Proc Soc Information Display 27:731–734Google Scholar
  59. 59.
    Johnson GM, Fairchild MD (2003) A top down description of S-CIELAB and CIEDE2000. Color Res Appl 28:425–435CrossRefGoogle Scholar
  60. 60.
    Johnson GM, Song X, Montag E, Fairchild MD (2010) Derivation of a color space for image color difference measurements. Color Res Appl 35:387–400CrossRefGoogle Scholar
  61. 61.
    International Standardization Organization (ISO) Graphic technology—Prepress digital data exchange. Part 1, ISO 12640–1 (1997), Part 2, ISO 12640–2 (2004), Part 3 ISO 12640–3 (2007)Google Scholar
  62. 62.
    International Standardization Organization (ISO) (2005) Photography—Psychophysical experimental method to estimate image quality. Parts 1, 2 and 3, ISO 20462Google Scholar
  63. 63.
    Aldaba MA, Linhares JM, Pinto PD, Nascimento SM, Amano K, Foster DH (2006) Visual sensitivity to color errors in images of natural scenes. Vis Neurosci 23:555–559CrossRefGoogle Scholar
  64. 64.
    Lee DG (2008) A colour-difference model for complex images on displays. Ph.D. Thesis, University of Leeds, UKGoogle Scholar
  65. 65.
    CIE Publication 199:2011 (2011) Methods for evaluating colour differences in images. CIE Central Bureau, ViennaGoogle Scholar
  66. 66.
    Melgosa M (2007) Request for existing experimental datasets on color differences. Color Res Appl 32:159CrossRefGoogle Scholar
  67. 67.
    Huang Z, Xu H, Luo MR, Cui G, Feng H (2010) Assessing total differences for effective samples having variations in color, coarseness, and glint. Chinese Optics Letters 8:717–720CrossRefGoogle Scholar
  68. 68.
    Dekker N, Kirchner EJJ, Supèr R, van den Kieboom GJ, Gottenbos R (2011) Total appearance differences for metallic and pearlescent materials: Contributions from color and texture. Color Res Appl 36:4–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departamento de Optica, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Laboratory Hubert Curien, UMR CNRS 5516Jean Monnet UniversitySaint-EtienneFrance
  3. 3.VeriVide LimitedLeicesterUK

Personalised recommendations