Advertisement

Protection of Colour Images by Selective Encryption

  • W. Puech
  • A. G. Bors
  • J. M. Rodrigues
Chapter

Abstract

This chapter presents methods for the protection of privacy associated with specific regions from colour images or colour image sequences. In the proposed approaches, regions of interest (ROI) are detected during the JPEG compression of the colour images and encrypted. The methodology presented in this book chapter performs simultaneously selective encryption (SE) and image compression. The SE is performed in a ROI and by using the Advanced Encryption Standard (AES) algorithm. The AES algorithm is used with the Cipher Feedback (CFB) mode and applied on a subset of the Huffman coefficients corresponding to the AC frequencies chosen according to the level of required security. In this study, we consider the encryption of colour images and image sequences compressed by JPEG and of image sequences compressed by motion JPEG. Our approach is performed without affecting the compression rate and by keeping the JPEG bitstream compliance. In the proposed method, the SE is performed in the Huffman coding stage of the JPEG algorithm without affecting the size of the compressed image. The most significant characteristic of the proposed method is the utilization of a single procedure to simultaneously perform the compression and the selective encryption rather than using two separate procedures. Our approach reduces the required computational complexity. We provide an experimental evaluation of the proposed method when applied on still colour images as well as on sequences of JPEG compressed images acquired with surveillance video cameras.

Keywords

Selective encryption Colour image protection JPEG compression AES Huffman coding 

References

  1. 1.
    Chai D, Ngan KN (1999) Face segmentation using skin-color map in videophone applications. IEEE Trans Circ Syst Video Tech 9(4):551–564CrossRefGoogle Scholar
  2. 2.
    Chang HT, Lin CC (2007) Intersecured joint image compression with encryption purpose based on fractal mating coding. Opt Eng 46(3):article no. 037002Google Scholar
  3. 3.
    Chen RJ, Horng SJ (2010) Novel SCAN-CA-based image security system using SCAN and 2-D Von Neumann cellular automata. Signal Process Image Comm 25(6):413–426CrossRefGoogle Scholar
  4. 4.
    Cheng H, Li X (2000) Partial encryption of compressed images and videos. IEEE Trans Signal Process 48(8):2439–2445MathSciNetCrossRefGoogle Scholar
  5. 5.
    Daemen J, Rijmen V (2002) AES proposal: the Rijndael block cipher. Technical report, Proton World International, Katholieke Universiteit Leuven, ESAT-COSIC, BelgiumMATHGoogle Scholar
  6. 6.
    Van Droogenbroeck M, Benedett R (2002) Techniques for a selective encryption of uncompressed and compressed images. In: Proceedings of advanced concepts for intelligent vision systems (ACIVS) 2002, Ghent, Belgium, pp 90–97Google Scholar
  7. 7.
    Fisch MM, Stgner H, Uhl A (2004) Layered encryption techniques for DCT-coded visual data. In: Proceedings of the European signal processing conference (EUSIPCO) 2004, Vienna, Austria, pp 821–824Google Scholar
  8. 8.
    Imaizumi S, Watanabe O, Fujiyoshi M, Kiya H (2006) Generalized hierarchical encryption of JPEG2000 codestreams for access control. In: Proceedings of IEEE internatinoal conference on image processing, Atlanta, USA, pp 1094–1097Google Scholar
  9. 9.
    Kang I, Arce GR, Lee H-K (2011) Color extended visual cryptography using error diffusion. IEEE Trans Image Process 20(1):132–145MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leung BW, Ng FW, Wong DS (2009) On the security of a visual cryptography scheme for color images. Pattern Recognit 42(5):929–940MATHCrossRefGoogle Scholar
  11. 11.
    Liao XF, Lay SY, Zhou Q (2010) A novel image encryption algorithm based on self-adaptive wave transmission. Signal Process 90(9):2714–2722MATHCrossRefGoogle Scholar
  12. 12.
    Lin C-Y, Chen C-H (2007) An invisible hybrid color image system using spread vector quantization neural networks with penalized FCM. Pattern Recognit 40(6):1685–1694MATHCrossRefGoogle Scholar
  13. 13.
    Lin ET, Eskicioglu AM, Lagendijk RL, Delp EJ. Advances in digital video content protection. Proc IEEE 93(1):171–183Google Scholar
  14. 14.
    Liu F, Wu CK, Lin XJ (2008) Colour visual cryptography schemes. IET Information Security 2(4):151–165MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu JL (2006) Efficient selective encryption for JPEG2000 images using private initial table. Pattern Recognit 39(8):1509–1517MATHCrossRefGoogle Scholar
  16. 16.
    Lookabaugh T, Sicker DC (2004) Selective encryption for consumer applications. IEEE Comm Mag 42(5):124–129CrossRefGoogle Scholar
  17. 17.
    Lukac R, Plataniotis KN (2005) Bit-level based secret sharing for image encryption. Pattern Recognit 38(5):767–772MATHCrossRefGoogle Scholar
  18. 18.
    Martin K, Lukac R, Plataniotis KN (2005) Efficient encryption of wavelet-based coded color images. Pattern Recognit 38(7):1111–1115MATHCrossRefGoogle Scholar
  19. 19.
    Ou SC, Chung HY, Sung WT (2006) Improving the compression and encryption of images using FPGA-based cryptosystems. Multimed Tool Appl 28(1):5–22CrossRefGoogle Scholar
  20. 20.
    Pennebaker WB, Mitchell JL (1993) JPEG: still image data compression standard. Van Nostrand Reinhold, San Jose, USAGoogle Scholar
  21. 21.
    Rodrigues J-M, Puech W, Bors AG (2006) A selective encryption for heterogenous color JPEG images based on VLC and AES stream cipher. In: Proceedings of the European conference on colour in graphics, imaging and vision (CGIV’06), Leeds, UK, pp 34–39Google Scholar
  22. 22.
    Rodrigues J-M, Puech W, Bors AG (2006) Selective encryption of human skin in JPEG images. In: Proceedings of IEEE international conference on image processing, Atlanta, USA, pp 1981–1984Google Scholar
  23. 23.
    Said A (2005) Measuring the strength of partial encryption scheme. In: Proceedings of the IEEE international conference on image processing, Genova, Italy, vol 2, pp 1126–1129Google Scholar
  24. 24.
    Schneier B (1995) Applied cryptography. Wiley, New York, USAGoogle Scholar
  25. 25.
    Seo YH, Choi HJ, Yoo JS, Kim DW (2010) Selective and adaptive signal hiding technique for security of JPEG2000. Int J Imag Syst Tech 20(3):277–284CrossRefGoogle Scholar
  26. 26.
    Serra J (1988) Image analysis and mathematical morphology. Academic Press, LondonGoogle Scholar
  27. 27.
    Shahid Z, Chaumont M, Puech W. Fast protection of H.264/AVC by selective encryption of CAVLC and CABAC for I and P frames. IEEE Trans Circ Syst Video Tech 21(5):565–576Google Scholar
  28. 28.
    Stinson DR (2005) Cryptography: theory and practice, (discrete mathematics and its applications). Chapman & Hall/CRC Press, New YorkGoogle Scholar
  29. 29.
    Tang L (1999) Methods for encrypting and decrypting MPEG video data efficiently. In: Proceedings of ACM Multimedia, vol 3, pp 219–229Google Scholar
  30. 30.
    Wen JT, Severa M, Zeng WJ, Luttrell MH, Jin WY (2002) A format-compliant configurable encryption framework for access control of video. IEEE Trans Circ Syst Video Tech 12(6):545–557CrossRefGoogle Scholar
  31. 31.
    Wu CP, Kuo CCJ (2005) Design of integrated multimedia compression and encryption systems IEEE Trans Multimed 7(5):828–839Google Scholar
  32. 32.
    Xiang T, Wong K, Liao X (2006) Selective image encryption using a spatiotemporal chaotic system. Chaos 17(3):article no. 023115Google Scholar
  33. 33.
    Yabuta K, Kitazawa H, Tanaka T (2005) A new concept of security camera monitoring with privacy protection by masking moving objects. In: Proceedings of Advances in Multimedia Information Processing, vol 1, pp 831–842CrossRefGoogle Scholar
  34. 34.
    Yang JH, Choi H, Kim T (2000) Noise estimation for blocking artifacts reduction in DCT coded images. IEEE Trans Circ Syst Video Tech 10(7):1116–1120CrossRefGoogle Scholar
  35. 35.
    Yeasin M, Polat E, Sharma R (2004) A multiobject tracking framework for interactive multimedia applications. IEEE Trans Multimed 6(3):398–405CrossRefGoogle Scholar
  36. 36.
    Zeng W, Lei S (1999) Efficient frequency domain video scrambling for content access control. In: Proceedings of ACM Multimedia, Orlando, FL, USA, pp 285–293Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory LIRMM, UMR CNRS 5506University of Montpellier IIMontpellierFrance
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK
  3. 3.Department of Computer ScienceFederal University of CearaFortalezaBrazil

Personalised recommendations